Разлагане на множители
18\left(x-\frac{-\sqrt{3841}-31}{36}\right)\left(x-\frac{\sqrt{3841}-31}{36}\right)
Изчисляване
18x^{2}+31x-40
Граф
Дял
Копирано в клипборда
18x^{2}+31x-40=0
Квадратен полином може да се разложи на множители, като се използва трансформацията ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), където x_{1} и x_{2} са решенията на квадратното уравнение ax^{2}+bx+c=0.
x=\frac{-31±\sqrt{31^{2}-4\times 18\left(-40\right)}}{2\times 18}
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-31±\sqrt{961-4\times 18\left(-40\right)}}{2\times 18}
Повдигане на квадрат на 31.
x=\frac{-31±\sqrt{961-72\left(-40\right)}}{2\times 18}
Умножете -4 по 18.
x=\frac{-31±\sqrt{961+2880}}{2\times 18}
Умножете -72 по -40.
x=\frac{-31±\sqrt{3841}}{2\times 18}
Съберете 961 с 2880.
x=\frac{-31±\sqrt{3841}}{36}
Умножете 2 по 18.
x=\frac{\sqrt{3841}-31}{36}
Сега решете уравнението x=\frac{-31±\sqrt{3841}}{36}, когато ± е плюс. Съберете -31 с \sqrt{3841}.
x=\frac{-\sqrt{3841}-31}{36}
Сега решете уравнението x=\frac{-31±\sqrt{3841}}{36}, когато ± е минус. Извадете \sqrt{3841} от -31.
18x^{2}+31x-40=18\left(x-\frac{\sqrt{3841}-31}{36}\right)\left(x-\frac{-\sqrt{3841}-31}{36}\right)
Разложете на множители първоначалния израз, като използвате ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заместете x_{1} с \frac{-31+\sqrt{3841}}{36} и x_{2} с \frac{-31-\sqrt{3841}}{36}.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}