Решаване за a
a=\sqrt{6}\approx 2,449489743
a=-\sqrt{6}\approx -2,449489743
Дял
Копирано в клипборда
14-9a^{2}+4a^{2}=-16
Добавете 4a^{2} от двете страни.
14-5a^{2}=-16
Групирайте -9a^{2} и 4a^{2}, за да получите -5a^{2}.
-5a^{2}=-16-14
Извадете 14 и от двете страни.
-5a^{2}=-30
Извадете 14 от -16, за да получите -30.
a^{2}=\frac{-30}{-5}
Разделете двете страни на -5.
a^{2}=6
Разделете -30 на -5, за да получите 6.
a=\sqrt{6} a=-\sqrt{6}
Получете корен квадратен от двете страни на равенството.
14-9a^{2}-\left(-16\right)=-4a^{2}
Извадете -16 и от двете страни.
14-9a^{2}+16=-4a^{2}
Противоположното на -16 е 16.
14-9a^{2}+16+4a^{2}=0
Добавете 4a^{2} от двете страни.
30-9a^{2}+4a^{2}=0
Съберете 14 и 16, за да се получи 30.
30-5a^{2}=0
Групирайте -9a^{2} и 4a^{2}, за да получите -5a^{2}.
-5a^{2}+30=0
Квадратни уравнения като това, с член x^{2}, но без член x, могат също да бъдат решени с помощта на формулата за корени на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, след като бъдат приведени в стандартна форма: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\left(-5\right)\times 30}}{2\left(-5\right)}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете -5 вместо a, 0 вместо b и 30 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-5\right)\times 30}}{2\left(-5\right)}
Повдигане на квадрат на 0.
a=\frac{0±\sqrt{20\times 30}}{2\left(-5\right)}
Умножете -4 по -5.
a=\frac{0±\sqrt{600}}{2\left(-5\right)}
Умножете 20 по 30.
a=\frac{0±10\sqrt{6}}{2\left(-5\right)}
Получете корен квадратен от 600.
a=\frac{0±10\sqrt{6}}{-10}
Умножете 2 по -5.
a=-\sqrt{6}
Сега решете уравнението a=\frac{0±10\sqrt{6}}{-10}, когато ± е плюс.
a=\sqrt{6}
Сега решете уравнението a=\frac{0±10\sqrt{6}}{-10}, когато ± е минус.
a=-\sqrt{6} a=\sqrt{6}
Уравнението сега е решено.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}