Изчисляване
\frac{xy}{x^{2}-y^{2}}
Разлагане
\frac{xy}{x^{2}-y^{2}}
Викторина
Algebra
5 проблеми, подобни на:
1 - \frac { x ^ { 2 } - x y - y ^ { 2 } } { x ^ { 2 } - y ^ { 2 } }
Дял
Копирано в клипборда
1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Разложете на множители x^{2}-y^{2}.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
За да съберете или извадите изрази, приведете ги към общ знаменател. Умножете 1 по \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}
Тъй като \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} и \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} имат един и същ знаменател, извадете ги, като извадите техните числители.
\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}
Извършете умноженията в \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}
Обединете подобните членове в x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{xy}{x^{2}-y^{2}}
Разложете \left(x+y\right)\left(x-y\right).
1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Разложете на множители x^{2}-y^{2}.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
За да съберете или извадите изрази, приведете ги към общ знаменател. Умножете 1 по \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}
Тъй като \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} и \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} имат един и същ знаменател, извадете ги, като извадите техните числители.
\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}
Извършете умноженията в \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}
Обединете подобните членове в x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{xy}{x^{2}-y^{2}}
Разложете \left(x+y\right)\left(x-y\right).
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}