Премини към основното съдържание
Решаване за x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

x^{2}+2x+1=\frac{5}{3}
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x^{2}+2x+1-\frac{5}{3}=\frac{5}{3}-\frac{5}{3}
Извадете \frac{5}{3} и от двете страни на уравнението.
x^{2}+2x+1-\frac{5}{3}=0
Изваждане на \frac{5}{3} от самото него дава 0.
x^{2}+2x-\frac{2}{3}=0
Извадете \frac{5}{3} от 1.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{2}{3}\right)}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, 2 вместо b и -\frac{2}{3} вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-\frac{2}{3}\right)}}{2}
Повдигане на квадрат на 2.
x=\frac{-2±\sqrt{4+\frac{8}{3}}}{2}
Умножете -4 по -\frac{2}{3}.
x=\frac{-2±\sqrt{\frac{20}{3}}}{2}
Съберете 4 с \frac{8}{3}.
x=\frac{-2±\frac{2\sqrt{15}}{3}}{2}
Получете корен квадратен от \frac{20}{3}.
x=\frac{\frac{2\sqrt{15}}{3}-2}{2}
Сега решете уравнението x=\frac{-2±\frac{2\sqrt{15}}{3}}{2}, когато ± е плюс. Съберете -2 с \frac{2\sqrt{15}}{3}.
x=\frac{\sqrt{15}}{3}-1
Разделете -2+\frac{2\sqrt{15}}{3} на 2.
x=\frac{-\frac{2\sqrt{15}}{3}-2}{2}
Сега решете уравнението x=\frac{-2±\frac{2\sqrt{15}}{3}}{2}, когато ± е минус. Извадете \frac{2\sqrt{15}}{3} от -2.
x=-\frac{\sqrt{15}}{3}-1
Разделете -2-\frac{2\sqrt{15}}{3} на 2.
x=\frac{\sqrt{15}}{3}-1 x=-\frac{\sqrt{15}}{3}-1
Уравнението сега е решено.
x^{2}+2x+1=\frac{5}{3}
Квадратни уравнения като това могат да бъде решени чрез допълване до пълен квадрат. За да допълните до пълен квадрат, уравнението трябва първо да бъде във форма x^{2}+bx=c.
\left(x+1\right)^{2}=\frac{5}{3}
Разложете на множител x^{2}+2x+1. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{5}{3}}
Получете корен квадратен от двете страни на равенството.
x+1=\frac{\sqrt{15}}{3} x+1=-\frac{\sqrt{15}}{3}
Опростявайте.
x=\frac{\sqrt{15}}{3}-1 x=-\frac{\sqrt{15}}{3}-1
Извадете 1 и от двете страни на уравнението.