Решаване за c
c=-t+6-\frac{83}{z}
z\neq 0
Решаване за t
t=-c+6-\frac{83}{z}
z\neq 0
Дял
Копирано в клипборда
\left(-c\right)z=tz+83-6z
Извадете 6z и от двете страни.
-cz=tz-6z+83
Пренаредете членовете.
\left(-z\right)c=tz-6z+83
Уравнението е в стандартна форма.
\frac{\left(-z\right)c}{-z}=\frac{tz-6z+83}{-z}
Разделете двете страни на -z.
c=\frac{tz-6z+83}{-z}
Делението на -z отменя умножението по -z.
c=-t+6-\frac{83}{z}
Разделете tz-6z+83 на -z.
tz+83=\left(-c\right)z+6z
Разменете страните, така че всички променливи членове да са от лявата страна.
tz=\left(-c\right)z+6z-83
Извадете 83 и от двете страни.
tz=-cz+6z-83
Пренаредете членовете.
zt=-cz+6z-83
Уравнението е в стандартна форма.
\frac{zt}{z}=\frac{-cz+6z-83}{z}
Разделете двете страни на z.
t=\frac{-cz+6z-83}{z}
Делението на z отменя умножението по z.
t=-c+6-\frac{83}{z}
Разделете -cz+6z-83 на z.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}