Премини към основното съдържание
Изчисляване
Tick mark Image
Разлагане на множители
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

-\left(\frac{1\times 21}{63\times 5}-\frac{1}{63}\times \frac{9}{4}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Умножете \frac{1}{63} по \frac{21}{5}, като умножавате числител по числител и знаменател по знаменател.
-\left(\frac{21}{315}-\frac{1}{63}\times \frac{9}{4}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Извършете умноженията в дробта \frac{1\times 21}{63\times 5}.
-\left(\frac{1}{15}-\frac{1}{63}\times \frac{9}{4}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Намаляване на дробта \frac{21}{315} до най-малките членове чрез извличане на корен и съкращаване на 21.
-\left(\frac{1}{15}-\frac{1\times 9}{63\times 4}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Умножете \frac{1}{63} по \frac{9}{4}, като умножавате числител по числител и знаменател по знаменател.
-\left(\frac{1}{15}-\frac{9}{252}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Извършете умноженията в дробта \frac{1\times 9}{63\times 4}.
-\left(\frac{1}{15}-\frac{1}{28}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Намаляване на дробта \frac{9}{252} до най-малките членове чрез извличане на корен и съкращаване на 9.
-\left(\frac{28}{420}-\frac{15}{420}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Най-малко общо кратно на 15 и 28 е 420. Преобразувайте \frac{1}{15} и \frac{1}{28} в дроби със знаменател 420.
-\left(\frac{28-15}{420}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Тъй като \frac{28}{420} и \frac{15}{420} имат един и същ знаменател, извадете ги, като извадите техните числители.
-\left(\frac{13}{420}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Извадете 15 от 28, за да получите 13.
-\left(\frac{13}{420}+\frac{1\times 7}{63\times 6}-\frac{1}{63}\times \frac{3}{2}\right)
Умножете \frac{1}{63} по \frac{7}{6}, като умножавате числител по числител и знаменател по знаменател.
-\left(\frac{13}{420}+\frac{7}{378}-\frac{1}{63}\times \frac{3}{2}\right)
Извършете умноженията в дробта \frac{1\times 7}{63\times 6}.
-\left(\frac{13}{420}+\frac{1}{54}-\frac{1}{63}\times \frac{3}{2}\right)
Намаляване на дробта \frac{7}{378} до най-малките членове чрез извличане на корен и съкращаване на 7.
-\left(\frac{117}{3780}+\frac{70}{3780}-\frac{1}{63}\times \frac{3}{2}\right)
Най-малко общо кратно на 420 и 54 е 3780. Преобразувайте \frac{13}{420} и \frac{1}{54} в дроби със знаменател 3780.
-\left(\frac{117+70}{3780}-\frac{1}{63}\times \frac{3}{2}\right)
Тъй като \frac{117}{3780} и \frac{70}{3780} имат един и същ знаменател, съберете ги, като съберете техните числители.
-\left(\frac{187}{3780}-\frac{1}{63}\times \frac{3}{2}\right)
Съберете 117 и 70, за да се получи 187.
-\left(\frac{187}{3780}-\frac{1\times 3}{63\times 2}\right)
Умножете \frac{1}{63} по \frac{3}{2}, като умножавате числител по числител и знаменател по знаменател.
-\left(\frac{187}{3780}-\frac{3}{126}\right)
Извършете умноженията в дробта \frac{1\times 3}{63\times 2}.
-\left(\frac{187}{3780}-\frac{1}{42}\right)
Намаляване на дробта \frac{3}{126} до най-малките членове чрез извличане на корен и съкращаване на 3.
-\left(\frac{187}{3780}-\frac{90}{3780}\right)
Най-малко общо кратно на 3780 и 42 е 3780. Преобразувайте \frac{187}{3780} и \frac{1}{42} в дроби със знаменател 3780.
-\frac{187-90}{3780}
Тъй като \frac{187}{3780} и \frac{90}{3780} имат един и същ знаменател, извадете ги, като извадите техните числители.
-\frac{97}{3780}
Извадете 90 от 187, за да получите 97.