Решаване за x
x=\frac{100y}{y+100}
y\neq -100
Решаване за y
y=\frac{100x}{100-x}
x\neq 100
Граф
Дял
Копирано в клипборда
\left(100-x\right)y\left(1+0\times 2x\right)=100x
Умножете 0 по 0, за да получите 0.
\left(100-x\right)y\left(1+0x\right)=100x
Умножете 0 по 2, за да получите 0.
\left(100-x\right)y\left(1+0\right)=100x
Нещо по нула дава нула.
\left(100-x\right)y\times 1=100x
Съберете 1 и 0, за да се получи 1.
\left(100y-xy\right)\times 1=100x
Използвайте дистрибутивното свойство, за да умножите 100-x по y.
100y-xy=100x
Използвайте дистрибутивното свойство, за да умножите 100y-xy по 1.
100y-xy-100x=0
Извадете 100x и от двете страни.
-xy-100x=-100y
Извадете 100y и от двете страни. Нещо, извадено от нула, дава отрицателната му стойност.
\left(-y-100\right)x=-100y
Групирайте всички членове, съдържащи x.
\frac{\left(-y-100\right)x}{-y-100}=-\frac{100y}{-y-100}
Разделете двете страни на -y-100.
x=-\frac{100y}{-y-100}
Делението на -y-100 отменя умножението по -y-100.
x=\frac{100y}{y+100}
Разделете -100y на -y-100.
\left(100-x\right)y\left(1+0\times 2x\right)=100x
Умножете 0 по 0, за да получите 0.
\left(100-x\right)y\left(1+0x\right)=100x
Умножете 0 по 2, за да получите 0.
\left(100-x\right)y\left(1+0\right)=100x
Нещо по нула дава нула.
\left(100-x\right)y\times 1=100x
Съберете 1 и 0, за да се получи 1.
\left(100y-xy\right)\times 1=100x
Използвайте дистрибутивното свойство, за да умножите 100-x по y.
100y-xy=100x
Използвайте дистрибутивното свойство, за да умножите 100y-xy по 1.
\left(100-x\right)y=100x
Групирайте всички членове, съдържащи y.
\frac{\left(100-x\right)y}{100-x}=\frac{100x}{100-x}
Разделете двете страни на 100-x.
y=\frac{100x}{100-x}
Делението на 100-x отменя умножението по 100-x.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}