Решаване за m (complex solution)
\left\{\begin{matrix}m=\frac{20x^{2}-280x+981}{20no\left(x+6\right)x^{2}}\text{, }&x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }n\neq 0\\m\in \mathrm{C}\text{, }&\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }n=0\right)\text{ or }\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }n=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\end{matrix}\right,
Решаване за n (complex solution)
\left\{\begin{matrix}n=\frac{20x^{2}-280x+981}{20mo\left(x+6\right)x^{2}}\text{, }&x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }m\neq 0\\n\in \mathrm{C}\text{, }&\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }m=0\right)\text{ or }\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }m=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\end{matrix}\right,
Решаване за m
m=\frac{20x^{2}-280x+981}{20no\left(x+6\right)x^{2}}
x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }n\neq 0
Решаване за n
n=\frac{20x^{2}-280x+981}{20mo\left(x+6\right)x^{2}}
x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }m\neq 0
Граф
Дял
Копирано в клипборда
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Умножете x по x, за да получите x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Използвайте Нютоновия бином \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, за да разложите \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите x^{2} по 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите 6x^{2}+x^{3} по m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите 6x^{2}m+x^{3}m по o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите 6x^{2}mo+x^{3}mo по n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
За да намерите противоположната стойност на 6x^{2}mon+x^{3}mon, намерете противоположната стойност на всеки член.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Извадете x^{2} и от двете страни.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Добавете 14x от двете страни.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Извадете 49 и от двете страни.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Извадете 49 от -\frac{1}{20}, за да получите -\frac{981}{20}.
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
Групирайте всички членове, съдържащи m.
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
Уравнението е в стандартна форма.
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Разделете двете страни на -6x^{2}on-x^{3}on.
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Делението на -6x^{2}on-x^{3}on отменя умножението по -6x^{2}on-x^{3}on.
m=-\frac{-20x^{2}+280x-981}{20no\left(x+6\right)x^{2}}
Разделете -x^{2}+14x-\frac{981}{20} на -6x^{2}on-x^{3}on.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Умножете x по x, за да получите x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Използвайте Нютоновия бином \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, за да разложите \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите x^{2} по 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите 6x^{2}+x^{3} по m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите 6x^{2}m+x^{3}m по o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите 6x^{2}mo+x^{3}mo по n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
За да намерите противоположната стойност на 6x^{2}mon+x^{3}mon, намерете противоположната стойност на всеки член.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Извадете x^{2} и от двете страни.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Добавете 14x от двете страни.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Извадете 49 и от двете страни.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Извадете 49 от -\frac{1}{20}, за да получите -\frac{981}{20}.
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
Групирайте всички членове, съдържащи n.
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
Уравнението е в стандартна форма.
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Разделете двете страни на -6x^{2}mo-x^{3}mo.
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Делението на -6x^{2}mo-x^{3}mo отменя умножението по -6x^{2}mo-x^{3}mo.
n=-\frac{-20x^{2}+280x-981}{20mo\left(x+6\right)x^{2}}
Разделете -x^{2}+14x-\frac{981}{20} на -6x^{2}mo-x^{3}mo.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Умножете x по x, за да получите x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Използвайте Нютоновия бином \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, за да разложите \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите x^{2} по 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите 6x^{2}+x^{3} по m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите 6x^{2}m+x^{3}m по o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите 6x^{2}mo+x^{3}mo по n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
За да намерите противоположната стойност на 6x^{2}mon+x^{3}mon, намерете противоположната стойност на всеки член.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Извадете x^{2} и от двете страни.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Добавете 14x от двете страни.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Извадете 49 и от двете страни.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Извадете 49 от -\frac{1}{20}, за да получите -\frac{981}{20}.
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
Групирайте всички членове, съдържащи m.
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
Уравнението е в стандартна форма.
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Разделете двете страни на -6x^{2}on-x^{3}on.
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Делението на -6x^{2}on-x^{3}on отменя умножението по -6x^{2}on-x^{3}on.
m=\frac{-20x^{2}+280x-981}{-20no\left(x+6\right)x^{2}}
Разделете -\frac{981}{20}-x^{2}+14x на -6x^{2}on-x^{3}on.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Умножете x по x, за да получите x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Използвайте Нютоновия бином \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, за да разложите \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите x^{2} по 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите 6x^{2}+x^{3} по m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите 6x^{2}m+x^{3}m по o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Използвайте дистрибутивното свойство, за да умножите 6x^{2}mo+x^{3}mo по n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
За да намерите противоположната стойност на 6x^{2}mon+x^{3}mon, намерете противоположната стойност на всеки член.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Извадете x^{2} и от двете страни.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Добавете 14x от двете страни.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Извадете 49 и от двете страни.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Извадете 49 от -\frac{1}{20}, за да получите -\frac{981}{20}.
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
Групирайте всички членове, съдържащи n.
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
Уравнението е в стандартна форма.
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Разделете двете страни на -6x^{2}mo-x^{3}mo.
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Делението на -6x^{2}mo-x^{3}mo отменя умножението по -6x^{2}mo-x^{3}mo.
n=\frac{-20x^{2}+280x-981}{-20mo\left(x+6\right)x^{2}}
Разделете -\frac{981}{20}-x^{2}+14x на -6x^{2}mo-x^{3}mo.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}