Премини към основното съдържание
Решаване за x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

x^{2}-8x+16=0
Използвайте Нютоновия бином \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, за да разложите \left(x-4\right)^{2}.
a+b=-8 ab=16
За да се реши уравнението, коефициентът x^{2}-8x+16 с помощта на формула x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да намерите a и b, настройте система, която да бъде решена.
-1,-16 -2,-8 -4,-4
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е отрицателен, a и b са отрицателни. Изброяване на всички тези целочислени двойки, които придават 16 на продукта.
-1-16=-17 -2-8=-10 -4-4=-8
Изчислете сумата за всяка двойка.
a=-4 b=-4
Решението е двойката, която дава сума -8.
\left(x-4\right)\left(x-4\right)
Пренапишете разложения на множители израз \left(x+a\right)\left(x+b\right) с помощта на получените стойности.
\left(x-4\right)^{2}
Преобразуване като биномен квадрат.
x=4
За да намерите решение за уравнението, решете x-4=0.
x^{2}-8x+16=0
Използвайте Нютоновия бином \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, за да разложите \left(x-4\right)^{2}.
a+b=-8 ab=1\times 16=16
За да се реши уравнението, коефициентът е от лявата страна по групи. Първо, лявата страна трябва да бъде пренаписана като x^{2}+ax+bx+16. За да намерите a и b, настройте система, която да бъде решена.
-1,-16 -2,-8 -4,-4
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е отрицателен, a и b са отрицателни. Изброяване на всички тези целочислени двойки, които придават 16 на продукта.
-1-16=-17 -2-8=-10 -4-4=-8
Изчислете сумата за всяка двойка.
a=-4 b=-4
Решението е двойката, която дава сума -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Напишете x^{2}-8x+16 като \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
Фактор, x в първата и -4 във втората група.
\left(x-4\right)\left(x-4\right)
Разложете на множители общия член x-4, като използвате разпределителното свойство.
\left(x-4\right)^{2}
Преобразуване като биномен квадрат.
x=4
За да намерите решение за уравнението, решете x-4=0.
x^{2}-8x+16=0
Използвайте Нютоновия бином \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, за да разложите \left(x-4\right)^{2}.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, -8 вместо b и 16 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Повдигане на квадрат на -8.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Умножете -4 по 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Съберете 64 с -64.
x=-\frac{-8}{2}
Получете корен квадратен от 0.
x=\frac{8}{2}
Противоположното на -8 е 8.
x=4
Разделете 8 на 2.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Получете корен квадратен от двете страни на равенството.
x-4=0 x-4=0
Опростявайте.
x=4 x=4
Съберете 4 към двете страни на уравнението.
x=4
Уравнението сега е решено. Решенията са еднакви.