Решаване за x
x=-5
Граф
Дял
Копирано в клипборда
x^{2}+10x+25=0
Използвайте Нютоновия бином \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, за да разложите \left(x+5\right)^{2}.
a+b=10 ab=25
За да се реши уравнението, коефициентът x^{2}+10x+25 с помощта на формула x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да намерите a и b, настройте система, която да бъде решена.
1,25 5,5
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е положителна, a и b са положителни. Изброяване на всички тези целочислени двойки, които придават 25 на продукта.
1+25=26 5+5=10
Изчислете сумата за всяка двойка.
a=5 b=5
Решението е двойката, която дава сума 10.
\left(x+5\right)\left(x+5\right)
Пренапишете разложения на множители израз \left(x+a\right)\left(x+b\right) с помощта на получените стойности.
\left(x+5\right)^{2}
Преобразуване като биномен квадрат.
x=-5
За да намерите решение за уравнението, решете x+5=0.
x^{2}+10x+25=0
Използвайте Нютоновия бином \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, за да разложите \left(x+5\right)^{2}.
a+b=10 ab=1\times 25=25
За да се реши уравнението, коефициентът е от лявата страна по групи. Първо, лявата страна трябва да бъде пренаписана като x^{2}+ax+bx+25. За да намерите a и b, настройте система, която да бъде решена.
1,25 5,5
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е положителна, a и b са положителни. Изброяване на всички тези целочислени двойки, които придават 25 на продукта.
1+25=26 5+5=10
Изчислете сумата за всяка двойка.
a=5 b=5
Решението е двойката, която дава сума 10.
\left(x^{2}+5x\right)+\left(5x+25\right)
Напишете x^{2}+10x+25 като \left(x^{2}+5x\right)+\left(5x+25\right).
x\left(x+5\right)+5\left(x+5\right)
Фактор, x в първата и 5 във втората група.
\left(x+5\right)\left(x+5\right)
Разложете на множители общия член x+5, като използвате разпределителното свойство.
\left(x+5\right)^{2}
Преобразуване като биномен квадрат.
x=-5
За да намерите решение за уравнението, решете x+5=0.
x^{2}+10x+25=0
Използвайте Нютоновия бином \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, за да разложите \left(x+5\right)^{2}.
x=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, 10 вместо b и 25 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 25}}{2}
Повдигане на квадрат на 10.
x=\frac{-10±\sqrt{100-100}}{2}
Умножете -4 по 25.
x=\frac{-10±\sqrt{0}}{2}
Съберете 100 с -100.
x=-\frac{10}{2}
Получете корен квадратен от 0.
x=-5
Разделете -10 на 2.
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
Получете корен квадратен от двете страни на равенството.
x+5=0 x+5=0
Опростявайте.
x=-5 x=-5
Извадете 5 и от двете страни на уравнението.
x=-5
Уравнението сега е решено. Решенията са еднакви.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}