Решаване за x
x=-3
x=2
Граф
Дял
Копирано в клипборда
x^{2}+4x+4-3\left(x+2\right)-4=0
Използвайте Нютоновия бином \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, за да разложите \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Използвайте дистрибутивното свойство, за да умножите -3 по x+2.
x^{2}+x+4-6-4=0
Групирайте 4x и -3x, за да получите x.
x^{2}+x-2-4=0
Извадете 6 от 4, за да получите -2.
x^{2}+x-6=0
Извадете 4 от -2, за да получите -6.
a+b=1 ab=-6
За да се реши уравнението, коефициентът x^{2}+x-6 с помощта на формула x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да намерите a и b, настройте система, която да бъде решена.
-1,6 -2,3
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Изброяване на всички тези целочислени двойки, които придават -6 на продукта.
-1+6=5 -2+3=1
Изчислете сумата за всяка двойка.
a=-2 b=3
Решението е двойката, която дава сума 1.
\left(x-2\right)\left(x+3\right)
Пренапишете разложения на множители израз \left(x+a\right)\left(x+b\right) с помощта на получените стойности.
x=2 x=-3
За да намерите решения за уравнение, решете x-2=0 и x+3=0.
x^{2}+4x+4-3\left(x+2\right)-4=0
Използвайте Нютоновия бином \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, за да разложите \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Използвайте дистрибутивното свойство, за да умножите -3 по x+2.
x^{2}+x+4-6-4=0
Групирайте 4x и -3x, за да получите x.
x^{2}+x-2-4=0
Извадете 6 от 4, за да получите -2.
x^{2}+x-6=0
Извадете 4 от -2, за да получите -6.
a+b=1 ab=1\left(-6\right)=-6
За да се реши уравнението, коефициентът е от лявата страна по групи. Първо, лявата страна трябва да бъде пренаписана като x^{2}+ax+bx-6. За да намерите a и b, настройте система, която да бъде решена.
-1,6 -2,3
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Изброяване на всички тези целочислени двойки, които придават -6 на продукта.
-1+6=5 -2+3=1
Изчислете сумата за всяка двойка.
a=-2 b=3
Решението е двойката, която дава сума 1.
\left(x^{2}-2x\right)+\left(3x-6\right)
Напишете x^{2}+x-6 като \left(x^{2}-2x\right)+\left(3x-6\right).
x\left(x-2\right)+3\left(x-2\right)
Фактор, x в първата и 3 във втората група.
\left(x-2\right)\left(x+3\right)
Разложете на множители общия член x-2, като използвате разпределителното свойство.
x=2 x=-3
За да намерите решения за уравнение, решете x-2=0 и x+3=0.
x^{2}+4x+4-3\left(x+2\right)-4=0
Използвайте Нютоновия бином \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, за да разложите \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Използвайте дистрибутивното свойство, за да умножите -3 по x+2.
x^{2}+x+4-6-4=0
Групирайте 4x и -3x, за да получите x.
x^{2}+x-2-4=0
Извадете 6 от 4, за да получите -2.
x^{2}+x-6=0
Извадете 4 от -2, за да получите -6.
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, 1 вместо b и -6 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
Повдигане на квадрат на 1.
x=\frac{-1±\sqrt{1+24}}{2}
Умножете -4 по -6.
x=\frac{-1±\sqrt{25}}{2}
Съберете 1 с 24.
x=\frac{-1±5}{2}
Получете корен квадратен от 25.
x=\frac{4}{2}
Сега решете уравнението x=\frac{-1±5}{2}, когато ± е плюс. Съберете -1 с 5.
x=2
Разделете 4 на 2.
x=-\frac{6}{2}
Сега решете уравнението x=\frac{-1±5}{2}, когато ± е минус. Извадете 5 от -1.
x=-3
Разделете -6 на 2.
x=2 x=-3
Уравнението сега е решено.
x^{2}+4x+4-3\left(x+2\right)-4=0
Използвайте Нютоновия бином \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, за да разложите \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Използвайте дистрибутивното свойство, за да умножите -3 по x+2.
x^{2}+x+4-6-4=0
Групирайте 4x и -3x, за да получите x.
x^{2}+x-2-4=0
Извадете 6 от 4, за да получите -2.
x^{2}+x-6=0
Извадете 4 от -2, за да получите -6.
x^{2}+x=6
Добавете 6 от двете страни. Нещо плюс нула дава същото нещо.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Разделете 1 – коефициента на члена на x – на 2, за да получите \frac{1}{2}. След това съберете квадрата на \frac{1}{2} с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Повдигнете на квадрат \frac{1}{2}, като повдигнете на квадрат и числителя, и знаменателя на дробта.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Съберете 6 с \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Разложете на множител x^{2}+x+\frac{1}{4}. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Получете корен квадратен от двете страни на равенството.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Опростявайте.
x=2 x=-3
Извадете \frac{1}{2} и от двете страни на уравнението.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}