Изчисляване
4
Разлагане на множители
2^{2}
Викторина
Polynomial
5 проблеми, подобни на:
( \frac{ n }{ 3n } - \frac{ 3n }{ n } ) \frac{ 3n }{ n-3n }
Дял
Копирано в клипборда
\left(\frac{1}{3}-\frac{3n}{n}\right)\times \frac{3n}{n-3n}
Съкращаване на n в числителя и знаменателя.
\left(\frac{1}{3}-3\right)\times \frac{3n}{n-3n}
Съкращаване на n в числителя и знаменателя.
\left(\frac{1}{3}-\frac{9}{3}\right)\times \frac{3n}{n-3n}
Преобразуване на 3 в дроб \frac{9}{3}.
\frac{1-9}{3}\times \frac{3n}{n-3n}
Тъй като \frac{1}{3} и \frac{9}{3} имат един и същ знаменател, извадете ги, като извадите техните числители.
-\frac{8}{3}\times \frac{3n}{n-3n}
Извадете 9 от 1, за да получите -8.
-\frac{8}{3}\times \frac{3n}{-2n}
Групирайте n и -3n, за да получите -2n.
-\frac{8}{3}\times \frac{3}{-2}
Съкращаване на n в числителя и знаменателя.
-\frac{8}{3}\left(-\frac{3}{2}\right)
Дробта \frac{3}{-2} може да бъде написана като -\frac{3}{2} чрез изваждане на знака минус.
\frac{-8\left(-3\right)}{3\times 2}
Умножете -\frac{8}{3} по -\frac{3}{2}, като умножавате числител по числител и знаменател по знаменател.
\frac{24}{6}
Извършете умноженията в дробта \frac{-8\left(-3\right)}{3\times 2}.
4
Разделете 24 на 6, за да получите 4.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}