Разлагане на множители
\frac{-3\ln(x^{2}+x+1)+2\sqrt{3}\arctan(2x)+6|2x+1|}{6}
Изчисляване
\frac{-3\ln(x^{2}+x+1)+2\sqrt{3}\arctan(2x)+6|2x+1|}{6}
Граф
Дял
Копирано в клипборда
factor(|2x+1|-\frac{1}{2}\log_{e}\left(x^{2}+x+1\right)+\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\arctan(\frac{2x}{1}))
Рационализиране на знаменателя на \frac{1}{\sqrt{3}}, като се умножи числител и знаменател по \sqrt{3}.
factor(|2x+1|-\frac{1}{2}\log_{e}\left(x^{2}+x+1\right)+\frac{\sqrt{3}}{3}\arctan(\frac{2x}{1}))
Квадратът на \sqrt{3} е 3.
factor(|2x+1|-\frac{1}{2}\log_{e}\left(x^{2}+x+1\right)+\frac{\sqrt{3}}{3}\arctan(2x))
Всяко число, разделено на едно, дава себе си.
factor(|2x+1|-\frac{1}{2}\log_{e}\left(x^{2}+x+1\right)+\frac{\sqrt{3}\arctan(2x)}{3})
Изразете \frac{\sqrt{3}}{3}\arctan(2x) като една дроб.
\frac{6|2x+1|-3\log_{e}\left(x^{2}+x+1\right)+2\sqrt{3}\arctan(2x)}{6}
Разложете на множители \frac{1}{6}.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}