Премини към основното съдържание
Разлагане на множители
Tick mark Image
Изчисляване
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

a+b=-2 ab=1\left(-48\right)=-48
Фактор на израза по групи. Първо, изразът трябва да бъде пренаписан като x^{2}+ax+bx-48. За да намерите a и b, настройте система, която да бъде решена.
1,-48 2,-24 3,-16 4,-12 6,-8
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е отрицателно, отрицателното число има по-голяма абсолютна стойност от положителното. Изброяване на всички тези целочислени двойки, които придават -48 на продукта.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Изчислете сумата за всяка двойка.
a=-8 b=6
Решението е двойката, която дава сума -2.
\left(x^{2}-8x\right)+\left(6x-48\right)
Напишете x^{2}-2x-48 като \left(x^{2}-8x\right)+\left(6x-48\right).
x\left(x-8\right)+6\left(x-8\right)
Фактор, x в първата и 6 във втората група.
\left(x-8\right)\left(x+6\right)
Разложете на множители общия член x-8, като използвате разпределителното свойство.
x^{2}-2x-48=0
Квадратен полином може да се разложи на множители, като се използва трансформацията ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), където x_{1} и x_{2} са решенията на квадратното уравнение ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-48\right)}}{2}
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-48\right)}}{2}
Повдигане на квадрат на -2.
x=\frac{-\left(-2\right)±\sqrt{4+192}}{2}
Умножете -4 по -48.
x=\frac{-\left(-2\right)±\sqrt{196}}{2}
Съберете 4 с 192.
x=\frac{-\left(-2\right)±14}{2}
Получете корен квадратен от 196.
x=\frac{2±14}{2}
Противоположното на -2 е 2.
x=\frac{16}{2}
Сега решете уравнението x=\frac{2±14}{2}, когато ± е плюс. Съберете 2 с 14.
x=8
Разделете 16 на 2.
x=-\frac{12}{2}
Сега решете уравнението x=\frac{2±14}{2}, когато ± е минус. Извадете 14 от 2.
x=-6
Разделете -12 на 2.
x^{2}-2x-48=\left(x-8\right)\left(x-\left(-6\right)\right)
Разложете на множители първоначалния израз, като използвате ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заместете x_{1} с 8 и x_{2} с -6.
x^{2}-2x-48=\left(x-8\right)\left(x+6\right)
Опростете всички изрази от вида p-\left(-q\right) на p+q.