Премини към основното съдържание
Решаване за x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

a+b=2 ab=-3
За да се реши уравнението, коефициентът x^{2}+2x-3 с помощта на формула x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да намерите a и b, настройте система, която да бъде решена.
a=-1 b=3
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Единствената такава двойка е системното решение.
\left(x-1\right)\left(x+3\right)
Пренапишете разложения на множители израз \left(x+a\right)\left(x+b\right) с помощта на получените стойности.
x=1 x=-3
За да намерите решения за уравнение, решете x-1=0 и x+3=0.
a+b=2 ab=1\left(-3\right)=-3
За да се реши уравнението, коефициентът е от лявата страна по групи. Първо, лявата страна трябва да бъде пренаписана като x^{2}+ax+bx-3. За да намерите a и b, настройте система, която да бъде решена.
a=-1 b=3
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Единствената такава двойка е системното решение.
\left(x^{2}-x\right)+\left(3x-3\right)
Напишете x^{2}+2x-3 като \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
Фактор, x в първата и 3 във втората група.
\left(x-1\right)\left(x+3\right)
Разложете на множители общия член x-1, като използвате разпределителното свойство.
x=1 x=-3
За да намерите решения за уравнение, решете x-1=0 и x+3=0.
x^{2}+2x-3=0
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, 2 вместо b и -3 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
Повдигане на квадрат на 2.
x=\frac{-2±\sqrt{4+12}}{2}
Умножете -4 по -3.
x=\frac{-2±\sqrt{16}}{2}
Съберете 4 с 12.
x=\frac{-2±4}{2}
Получете корен квадратен от 16.
x=\frac{2}{2}
Сега решете уравнението x=\frac{-2±4}{2}, когато ± е плюс. Съберете -2 с 4.
x=1
Разделете 2 на 2.
x=-\frac{6}{2}
Сега решете уравнението x=\frac{-2±4}{2}, когато ± е минус. Извадете 4 от -2.
x=-3
Разделете -6 на 2.
x=1 x=-3
Уравнението сега е решено.
x^{2}+2x-3=0
Квадратни уравнения като това могат да бъде решени чрез допълване до пълен квадрат. За да допълните до пълен квадрат, уравнението трябва първо да бъде във форма x^{2}+bx=c.
x^{2}+2x-3-\left(-3\right)=-\left(-3\right)
Съберете 3 към двете страни на уравнението.
x^{2}+2x=-\left(-3\right)
Изваждане на -3 от самото него дава 0.
x^{2}+2x=3
Извадете -3 от 0.
x^{2}+2x+1^{2}=3+1^{2}
Разделете 2 – коефициента на члена на x – на 2, за да получите 1. След това съберете квадрата на 1 с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}+2x+1=3+1
Повдигане на квадрат на 1.
x^{2}+2x+1=4
Съберете 3 с 1.
\left(x+1\right)^{2}=4
Разлагане на множители на x^{2}+2x+1. Като правило, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Получете корен квадратен от двете страни на равенството.
x+1=2 x+1=-2
Опростявайте.
x=1 x=-3
Извадете 1 и от двете страни на уравнението.