Решаване за x (complex solution)
x=-\frac{5}{6}\approx -0,833333333
x=-\frac{1}{3}\approx -0,333333333
x=-\frac{\sqrt{2}i}{6}-\frac{7}{12}\approx -0,583333333-0,23570226i
x=\frac{\sqrt{2}i}{6}-\frac{7}{12}\approx -0,583333333+0,23570226i
Решаване за x
x=-\frac{5}{6}\approx -0,833333333
x=-\frac{1}{3}\approx -0,333333333
Граф
Дял
Копирано в клипборда
\left(144x^{2}+168x+49\right)\left(3x+2\right)\left(2x+1\right)=3
Използвайте Нютоновия бином \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, за да разложите \left(12x+7\right)^{2}.
\left(432x^{3}+792x^{2}+483x+98\right)\left(2x+1\right)=3
Използвайте дистрибутивното свойство, за да умножите 144x^{2}+168x+49 по 3x+2 и да групирате подобните членове.
864x^{4}+2016x^{3}+1758x^{2}+679x+98=3
Използвайте дистрибутивното свойство, за да умножите 432x^{3}+792x^{2}+483x+98 по 2x+1 и да групирате подобните членове.
864x^{4}+2016x^{3}+1758x^{2}+679x+98-3=0
Извадете 3 и от двете страни.
864x^{4}+2016x^{3}+1758x^{2}+679x+95=0
Извадете 3 от 98, за да получите 95.
±\frac{95}{864},±\frac{95}{432},±\frac{95}{288},±\frac{95}{216},±\frac{95}{144},±\frac{95}{108},±\frac{95}{96},±\frac{95}{72},±\frac{95}{54},±\frac{95}{48},±\frac{95}{36},±\frac{95}{32},±\frac{95}{27},±\frac{95}{24},±\frac{95}{18},±\frac{95}{16},±\frac{95}{12},±\frac{95}{9},±\frac{95}{8},±\frac{95}{6},±\frac{95}{4},±\frac{95}{3},±\frac{95}{2},±95,±\frac{19}{864},±\frac{19}{432},±\frac{19}{288},±\frac{19}{216},±\frac{19}{144},±\frac{19}{108},±\frac{19}{96},±\frac{19}{72},±\frac{19}{54},±\frac{19}{48},±\frac{19}{36},±\frac{19}{32},±\frac{19}{27},±\frac{19}{24},±\frac{19}{18},±\frac{19}{16},±\frac{19}{12},±\frac{19}{9},±\frac{19}{8},±\frac{19}{6},±\frac{19}{4},±\frac{19}{3},±\frac{19}{2},±19,±\frac{5}{864},±\frac{5}{432},±\frac{5}{288},±\frac{5}{216},±\frac{5}{144},±\frac{5}{108},±\frac{5}{96},±\frac{5}{72},±\frac{5}{54},±\frac{5}{48},±\frac{5}{36},±\frac{5}{32},±\frac{5}{27},±\frac{5}{24},±\frac{5}{18},±\frac{5}{16},±\frac{5}{12},±\frac{5}{9},±\frac{5}{8},±\frac{5}{6},±\frac{5}{4},±\frac{5}{3},±\frac{5}{2},±5,±\frac{1}{864},±\frac{1}{432},±\frac{1}{288},±\frac{1}{216},±\frac{1}{144},±\frac{1}{108},±\frac{1}{96},±\frac{1}{72},±\frac{1}{54},±\frac{1}{48},±\frac{1}{36},±\frac{1}{32},±\frac{1}{27},±\frac{1}{24},±\frac{1}{18},±\frac{1}{16},±\frac{1}{12},±\frac{1}{9},±\frac{1}{8},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
По теоремата за рационални коренни всички рационални корени на полинома са във формата \frac{p}{q}, където p разделя постоянния член 95, а q разделя водещия коефициент 864. Изредете всички възможности \frac{p}{q}.
x=-\frac{1}{3}
Намерете един такъв корен, като изпробвате всички целочислени стойности, започвайки от най-малката по абсолютна стойност. Ако не намерите целочислени корени, изпробвайте дробите.
288x^{3}+576x^{2}+394x+95=0
Според теоремата за множителите x-k е множител на полинома за всеки корен k. Разделете 864x^{4}+2016x^{3}+1758x^{2}+679x+95 на 3\left(x+\frac{1}{3}\right)=3x+1, за да получите 288x^{3}+576x^{2}+394x+95. Решаване на уравнението, където резултатът е равен на 0.
±\frac{95}{288},±\frac{95}{144},±\frac{95}{96},±\frac{95}{72},±\frac{95}{48},±\frac{95}{36},±\frac{95}{32},±\frac{95}{24},±\frac{95}{18},±\frac{95}{16},±\frac{95}{12},±\frac{95}{9},±\frac{95}{8},±\frac{95}{6},±\frac{95}{4},±\frac{95}{3},±\frac{95}{2},±95,±\frac{19}{288},±\frac{19}{144},±\frac{19}{96},±\frac{19}{72},±\frac{19}{48},±\frac{19}{36},±\frac{19}{32},±\frac{19}{24},±\frac{19}{18},±\frac{19}{16},±\frac{19}{12},±\frac{19}{9},±\frac{19}{8},±\frac{19}{6},±\frac{19}{4},±\frac{19}{3},±\frac{19}{2},±19,±\frac{5}{288},±\frac{5}{144},±\frac{5}{96},±\frac{5}{72},±\frac{5}{48},±\frac{5}{36},±\frac{5}{32},±\frac{5}{24},±\frac{5}{18},±\frac{5}{16},±\frac{5}{12},±\frac{5}{9},±\frac{5}{8},±\frac{5}{6},±\frac{5}{4},±\frac{5}{3},±\frac{5}{2},±5,±\frac{1}{288},±\frac{1}{144},±\frac{1}{96},±\frac{1}{72},±\frac{1}{48},±\frac{1}{36},±\frac{1}{32},±\frac{1}{24},±\frac{1}{18},±\frac{1}{16},±\frac{1}{12},±\frac{1}{9},±\frac{1}{8},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
По теоремата за рационални коренни всички рационални корени на полинома са във формата \frac{p}{q}, където p разделя постоянния член 95, а q разделя водещия коефициент 288. Изредете всички възможности \frac{p}{q}.
x=-\frac{5}{6}
Намерете един такъв корен, като изпробвате всички целочислени стойности, започвайки от най-малката по абсолютна стойност. Ако не намерите целочислени корени, изпробвайте дробите.
48x^{2}+56x+19=0
Според теоремата за множителите x-k е множител на полинома за всеки корен k. Разделете 288x^{3}+576x^{2}+394x+95 на 6\left(x+\frac{5}{6}\right)=6x+5, за да получите 48x^{2}+56x+19. Решаване на уравнението, където резултатът е равен на 0.
x=\frac{-56±\sqrt{56^{2}-4\times 48\times 19}}{2\times 48}
Всички уравнения от вида ax^{2}+bx+c=0 могат да бъдат решени чрез формулата за решаване на квадратно уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Заместете 48 за a, 56 за b и 19 за c във формулата за решаване на квадратно уравнение.
x=\frac{-56±\sqrt{-512}}{96}
Извършете изчисленията.
x=-\frac{\sqrt{2}i}{6}-\frac{7}{12} x=\frac{\sqrt{2}i}{6}-\frac{7}{12}
Решете уравнението 48x^{2}+56x+19=0, когато ± е плюс и когато ± е минус.
x=-\frac{1}{3} x=-\frac{5}{6} x=-\frac{\sqrt{2}i}{6}-\frac{7}{12} x=\frac{\sqrt{2}i}{6}-\frac{7}{12}
Изброяване на всички намерени решения.
\left(144x^{2}+168x+49\right)\left(3x+2\right)\left(2x+1\right)=3
Използвайте Нютоновия бином \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, за да разложите \left(12x+7\right)^{2}.
\left(432x^{3}+792x^{2}+483x+98\right)\left(2x+1\right)=3
Използвайте дистрибутивното свойство, за да умножите 144x^{2}+168x+49 по 3x+2 и да групирате подобните членове.
864x^{4}+2016x^{3}+1758x^{2}+679x+98=3
Използвайте дистрибутивното свойство, за да умножите 432x^{3}+792x^{2}+483x+98 по 2x+1 и да групирате подобните членове.
864x^{4}+2016x^{3}+1758x^{2}+679x+98-3=0
Извадете 3 и от двете страни.
864x^{4}+2016x^{3}+1758x^{2}+679x+95=0
Извадете 3 от 98, за да получите 95.
±\frac{95}{864},±\frac{95}{432},±\frac{95}{288},±\frac{95}{216},±\frac{95}{144},±\frac{95}{108},±\frac{95}{96},±\frac{95}{72},±\frac{95}{54},±\frac{95}{48},±\frac{95}{36},±\frac{95}{32},±\frac{95}{27},±\frac{95}{24},±\frac{95}{18},±\frac{95}{16},±\frac{95}{12},±\frac{95}{9},±\frac{95}{8},±\frac{95}{6},±\frac{95}{4},±\frac{95}{3},±\frac{95}{2},±95,±\frac{19}{864},±\frac{19}{432},±\frac{19}{288},±\frac{19}{216},±\frac{19}{144},±\frac{19}{108},±\frac{19}{96},±\frac{19}{72},±\frac{19}{54},±\frac{19}{48},±\frac{19}{36},±\frac{19}{32},±\frac{19}{27},±\frac{19}{24},±\frac{19}{18},±\frac{19}{16},±\frac{19}{12},±\frac{19}{9},±\frac{19}{8},±\frac{19}{6},±\frac{19}{4},±\frac{19}{3},±\frac{19}{2},±19,±\frac{5}{864},±\frac{5}{432},±\frac{5}{288},±\frac{5}{216},±\frac{5}{144},±\frac{5}{108},±\frac{5}{96},±\frac{5}{72},±\frac{5}{54},±\frac{5}{48},±\frac{5}{36},±\frac{5}{32},±\frac{5}{27},±\frac{5}{24},±\frac{5}{18},±\frac{5}{16},±\frac{5}{12},±\frac{5}{9},±\frac{5}{8},±\frac{5}{6},±\frac{5}{4},±\frac{5}{3},±\frac{5}{2},±5,±\frac{1}{864},±\frac{1}{432},±\frac{1}{288},±\frac{1}{216},±\frac{1}{144},±\frac{1}{108},±\frac{1}{96},±\frac{1}{72},±\frac{1}{54},±\frac{1}{48},±\frac{1}{36},±\frac{1}{32},±\frac{1}{27},±\frac{1}{24},±\frac{1}{18},±\frac{1}{16},±\frac{1}{12},±\frac{1}{9},±\frac{1}{8},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
По теоремата за рационални коренни всички рационални корени на полинома са във формата \frac{p}{q}, където p разделя постоянния член 95, а q разделя водещия коефициент 864. Изредете всички възможности \frac{p}{q}.
x=-\frac{1}{3}
Намерете един такъв корен, като изпробвате всички целочислени стойности, започвайки от най-малката по абсолютна стойност. Ако не намерите целочислени корени, изпробвайте дробите.
288x^{3}+576x^{2}+394x+95=0
Според теоремата за множителите x-k е множител на полинома за всеки корен k. Разделете 864x^{4}+2016x^{3}+1758x^{2}+679x+95 на 3\left(x+\frac{1}{3}\right)=3x+1, за да получите 288x^{3}+576x^{2}+394x+95. Решаване на уравнението, където резултатът е равен на 0.
±\frac{95}{288},±\frac{95}{144},±\frac{95}{96},±\frac{95}{72},±\frac{95}{48},±\frac{95}{36},±\frac{95}{32},±\frac{95}{24},±\frac{95}{18},±\frac{95}{16},±\frac{95}{12},±\frac{95}{9},±\frac{95}{8},±\frac{95}{6},±\frac{95}{4},±\frac{95}{3},±\frac{95}{2},±95,±\frac{19}{288},±\frac{19}{144},±\frac{19}{96},±\frac{19}{72},±\frac{19}{48},±\frac{19}{36},±\frac{19}{32},±\frac{19}{24},±\frac{19}{18},±\frac{19}{16},±\frac{19}{12},±\frac{19}{9},±\frac{19}{8},±\frac{19}{6},±\frac{19}{4},±\frac{19}{3},±\frac{19}{2},±19,±\frac{5}{288},±\frac{5}{144},±\frac{5}{96},±\frac{5}{72},±\frac{5}{48},±\frac{5}{36},±\frac{5}{32},±\frac{5}{24},±\frac{5}{18},±\frac{5}{16},±\frac{5}{12},±\frac{5}{9},±\frac{5}{8},±\frac{5}{6},±\frac{5}{4},±\frac{5}{3},±\frac{5}{2},±5,±\frac{1}{288},±\frac{1}{144},±\frac{1}{96},±\frac{1}{72},±\frac{1}{48},±\frac{1}{36},±\frac{1}{32},±\frac{1}{24},±\frac{1}{18},±\frac{1}{16},±\frac{1}{12},±\frac{1}{9},±\frac{1}{8},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
По теоремата за рационални коренни всички рационални корени на полинома са във формата \frac{p}{q}, където p разделя постоянния член 95, а q разделя водещия коефициент 288. Изредете всички възможности \frac{p}{q}.
x=-\frac{5}{6}
Намерете един такъв корен, като изпробвате всички целочислени стойности, започвайки от най-малката по абсолютна стойност. Ако не намерите целочислени корени, изпробвайте дробите.
48x^{2}+56x+19=0
Според теоремата за множителите x-k е множител на полинома за всеки корен k. Разделете 288x^{3}+576x^{2}+394x+95 на 6\left(x+\frac{5}{6}\right)=6x+5, за да получите 48x^{2}+56x+19. Решаване на уравнението, където резултатът е равен на 0.
x=\frac{-56±\sqrt{56^{2}-4\times 48\times 19}}{2\times 48}
Всички уравнения от вида ax^{2}+bx+c=0 могат да бъдат решени чрез формулата за решаване на квадратно уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Заместете 48 за a, 56 за b и 19 за c във формулата за решаване на квадратно уравнение.
x=\frac{-56±\sqrt{-512}}{96}
Извършете изчисленията.
x\in \emptyset
Тъй като квадратният корен на отрицателно число не е дефиниран за реални числа, няма решения.
x=-\frac{1}{3} x=-\frac{5}{6}
Изброяване на всички намерени решения.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}