Премини към основното съдържание
Решаване за x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

x^{4}-2x^{3}-7x^{2}+8x+12=0
Опростявайте.
±12,±6,±4,±3,±2,±1
По теоремата за рационални коренни всички рационални корени на полинома са във формата \frac{p}{q}, където p разделя постоянния член 12, а q разделя водещия коефициент 1. Изредете всички възможности \frac{p}{q}.
x=-1
Намерете един такъв корен, като изпробвате всички целочислени стойности, започвайки от най-малката по абсолютна стойност. Ако не намерите целочислени корени, изпробвайте дробите.
x^{3}-3x^{2}-4x+12=0
Според теоремата за множителите x-k е множител на полинома за всеки корен k. Разделете x^{4}-2x^{3}-7x^{2}+8x+12 на x+1, за да получите x^{3}-3x^{2}-4x+12. Решаване на уравнението, където резултатът е равен на 0.
±12,±6,±4,±3,±2,±1
По теоремата за рационални коренни всички рационални корени на полинома са във формата \frac{p}{q}, където p разделя постоянния член 12, а q разделя водещия коефициент 1. Изредете всички възможности \frac{p}{q}.
x=2
Намерете един такъв корен, като изпробвате всички целочислени стойности, започвайки от най-малката по абсолютна стойност. Ако не намерите целочислени корени, изпробвайте дробите.
x^{2}-x-6=0
Според теоремата за множителите x-k е множител на полинома за всеки корен k. Разделете x^{3}-3x^{2}-4x+12 на x-2, за да получите x^{2}-x-6. Решаване на уравнението, където резултатът е равен на 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\left(-6\right)}}{2}
Всички уравнения от вида ax^{2}+bx+c=0 могат да бъдат решени чрез формулата за решаване на квадратно уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Заместете 1 за a, -1 за b и -6 за c във формулата за решаване на квадратно уравнение.
x=\frac{1±5}{2}
Извършете изчисленията.
x=-2 x=3
Решете уравнението x^{2}-x-6=0, когато ± е плюс и когато ± е минус.
x=-1 x=2 x=-2 x=3
Изброяване на всички намерени решения.