Решаване за x
x=\frac{5}{8}=0,625
Граф
Дял
Копирано в клипборда
\sqrt{2x+1}=1+\sqrt{2x-1}
Извадете -\sqrt{2x-1} и от двете страни на уравнението.
\left(\sqrt{2x+1}\right)^{2}=\left(1+\sqrt{2x-1}\right)^{2}
Повдигнете на квадрат и двете страни на уравнението.
2x+1=\left(1+\sqrt{2x-1}\right)^{2}
Изчислявате 2 на степен \sqrt{2x+1} и получавате 2x+1.
2x+1=1+2\sqrt{2x-1}+\left(\sqrt{2x-1}\right)^{2}
Използвайте Нютоновия бином \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, за да разложите \left(1+\sqrt{2x-1}\right)^{2}.
2x+1=1+2\sqrt{2x-1}+2x-1
Изчислявате 2 на степен \sqrt{2x-1} и получавате 2x-1.
2x+1=2\sqrt{2x-1}+2x
Извадете 1 от 1, за да получите 0.
2x+1-2\sqrt{2x-1}=2x
Извадете 2\sqrt{2x-1} и от двете страни.
2x+1-2\sqrt{2x-1}-2x=0
Извадете 2x и от двете страни.
1-2\sqrt{2x-1}=0
Групирайте 2x и -2x, за да получите 0.
-2\sqrt{2x-1}=-1
Извадете 1 и от двете страни. Нещо, извадено от нула, дава отрицателната му стойност.
\sqrt{2x-1}=\frac{-1}{-2}
Разделете двете страни на -2.
\sqrt{2x-1}=\frac{1}{2}
Дробта \frac{-1}{-2} може да бъде опростена до \frac{1}{2} чрез премахване на знака минус от числителя и знаменателя.
2x-1=\frac{1}{4}
Повдигнете на квадрат и двете страни на уравнението.
2x-1-\left(-1\right)=\frac{1}{4}-\left(-1\right)
Съберете 1 към двете страни на уравнението.
2x=\frac{1}{4}-\left(-1\right)
Изваждане на -1 от самото него дава 0.
2x=\frac{5}{4}
Извадете -1 от \frac{1}{4}.
\frac{2x}{2}=\frac{\frac{5}{4}}{2}
Разделете двете страни на 2.
x=\frac{\frac{5}{4}}{2}
Делението на 2 отменя умножението по 2.
x=\frac{5}{8}
Разделете \frac{5}{4} на 2.
\sqrt{2\times \frac{5}{8}+1}-\sqrt{2\times \frac{5}{8}-1}=1
Заместете \frac{5}{8} вместо x в уравнението \sqrt{2x+1}-\sqrt{2x-1}=1.
1=1
Опростявайте. Стойността x=\frac{5}{8} отговаря на уравнението.
x=\frac{5}{8}
Уравнението \sqrt{2x+1}=\sqrt{2x-1}+1 има уникално решение.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}