Решаване за w
w=9
Дял
Копирано в клипборда
\left(\sqrt{-2w+43}\right)^{2}=\left(w-4\right)^{2}
Повдигнете на квадрат и двете страни на уравнението.
-2w+43=\left(w-4\right)^{2}
Изчислявате 2 на степен \sqrt{-2w+43} и получавате -2w+43.
-2w+43=w^{2}-8w+16
Използвайте Нютоновия бином \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, за да разложите \left(w-4\right)^{2}.
-2w+43-w^{2}=-8w+16
Извадете w^{2} и от двете страни.
-2w+43-w^{2}+8w=16
Добавете 8w от двете страни.
6w+43-w^{2}=16
Групирайте -2w и 8w, за да получите 6w.
6w+43-w^{2}-16=0
Извадете 16 и от двете страни.
6w+27-w^{2}=0
Извадете 16 от 43, за да получите 27.
-w^{2}+6w+27=0
Преобразувайте полинома в стандартна форма. Поставете членовете в ред от най-висока до най-ниска степен.
a+b=6 ab=-27=-27
За да се реши уравнението, коефициентът е от лявата страна по групи. Първо, лявата страна трябва да бъде пренаписана като -w^{2}+aw+bw+27. За да намерите a и b, настройте система, която да бъде решена.
-1,27 -3,9
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Изброяване на всички тези целочислени двойки, които придават -27 на продукта.
-1+27=26 -3+9=6
Изчислете сумата за всяка двойка.
a=9 b=-3
Решението е двойката, която дава сума 6.
\left(-w^{2}+9w\right)+\left(-3w+27\right)
Напишете -w^{2}+6w+27 като \left(-w^{2}+9w\right)+\left(-3w+27\right).
-w\left(w-9\right)-3\left(w-9\right)
Фактор, -w в първата и -3 във втората група.
\left(w-9\right)\left(-w-3\right)
Разложете на множители общия член w-9, като използвате разпределителното свойство.
w=9 w=-3
За да намерите решения за уравнение, решете w-9=0 и -w-3=0.
\sqrt{-2\times 9+43}=9-4
Заместете 9 вместо w в уравнението \sqrt{-2w+43}=w-4.
5=5
Опростявайте. Стойността w=9 отговаря на уравнението.
\sqrt{-2\left(-3\right)+43}=-3-4
Заместете -3 вместо w в уравнението \sqrt{-2w+43}=w-4.
7=-7
Опростявайте. Стойността w=-3 не отговаря на уравнението, защото лявата и дясната страна имат противоположни знаци.
w=9
Уравнението \sqrt{43-2w}=w-4 има уникално решение.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}