Изчисляване
3\sqrt{3}-1\approx 4,196152423
Разлагане на множители
3 \sqrt{3} - 1 = 4,196152423
Дял
Копирано в клипборда
\frac{\sqrt{2}}{\sqrt{3}}-\left(\frac{1}{6}\sqrt{24}-\frac{3}{2}\sqrt{12}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Презаписване на квадратния корен на делението \sqrt{\frac{2}{3}} като деление на квадратен корен \frac{\sqrt{2}}{\sqrt{3}}.
\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\left(\frac{1}{6}\sqrt{24}-\frac{3}{2}\sqrt{12}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Рационализиране на знаменателя на \frac{\sqrt{2}}{\sqrt{3}}, като се умножи числител и знаменател по \sqrt{3}.
\frac{\sqrt{2}\sqrt{3}}{3}-\left(\frac{1}{6}\sqrt{24}-\frac{3}{2}\sqrt{12}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Квадратът на \sqrt{3} е 3.
\frac{\sqrt{6}}{3}-\left(\frac{1}{6}\sqrt{24}-\frac{3}{2}\sqrt{12}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
За да умножите \sqrt{2} и \sqrt{3}, умножете числата под квадратния корен.
\frac{\sqrt{6}}{3}-\left(\frac{1}{6}\times 2\sqrt{6}-\frac{3}{2}\sqrt{12}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Разложете на множители 24=2^{2}\times 6. Презапис на квадратния корен на продукта \sqrt{2^{2}\times 6} като произведение на квадратен корен \sqrt{2^{2}}\sqrt{6}. Получете корен квадратен от 2^{2}.
\frac{\sqrt{6}}{3}-\left(\frac{2}{6}\sqrt{6}-\frac{3}{2}\sqrt{12}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Умножете \frac{1}{6} по 2, за да получите \frac{2}{6}.
\frac{\sqrt{6}}{3}-\left(\frac{1}{3}\sqrt{6}-\frac{3}{2}\sqrt{12}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Намаляване на дробта \frac{2}{6} до най-малките членове чрез извличане на корен и съкращаване на 2.
\frac{\sqrt{6}}{3}-\left(\frac{1}{3}\sqrt{6}-\frac{3}{2}\times 2\sqrt{3}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Разложете на множители 12=2^{2}\times 3. Презапис на квадратния корен на продукта \sqrt{2^{2}\times 3} като произведение на квадратен корен \sqrt{2^{2}}\sqrt{3}. Получете корен квадратен от 2^{2}.
\frac{\sqrt{6}}{3}-\left(\frac{1}{3}\sqrt{6}-3\sqrt{3}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Съкращаване на 2 и 2.
\frac{\sqrt{6}}{3}-\frac{1}{3}\sqrt{6}-\left(-3\sqrt{3}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
За да намерите противоположната стойност на \frac{1}{3}\sqrt{6}-3\sqrt{3}, намерете противоположната стойност на всеки член.
-\left(-3\sqrt{3}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Групирайте \frac{\sqrt{6}}{3} и -\frac{1}{3}\sqrt{6}, за да получите 0.
3\sqrt{3}+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Противоположното на -3\sqrt{3} е 3\sqrt{3}.
3\sqrt{3}+\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}
Сметнете \left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right). Умножението може да бъде преобразувано в разлика на квадрати с помощта на правилото: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\sqrt{3}+2-\left(\sqrt{3}\right)^{2}
Квадратът на \sqrt{2} е 2.
3\sqrt{3}+2-3
Квадратът на \sqrt{3} е 3.
3\sqrt{3}-1
Извадете 3 от 2, за да получите -1.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}