Премини към основното съдържание
Диференциране по отношение на θ
Tick mark Image
Изчисляване
Tick mark Image
Граф
Викторина
Trigonometry

Подобни проблеми от търсенето в мрежата

Дял

\frac{\mathrm{d}}{\mathrm{d}\theta }(\sin(\theta ))=\left(\lim_{h\to 0}\frac{\sin(\theta +h)-\sin(\theta )}{h}\right)
За функция f\left(x\right), производната е границата на \frac{f\left(x+h\right)-f\left(x\right)}{h}, като h дава 0, ако тази граница съществува.
\lim_{h\to 0}\frac{\sin(h+\theta )-\sin(\theta )}{h}
Използвайте формулата на сума за синус.
\lim_{h\to 0}\frac{\sin(\theta )\left(\cos(h)-1\right)+\cos(\theta )\sin(h)}{h}
Разложете на множители \sin(\theta ).
\left(\lim_{h\to 0}\sin(\theta )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(\theta )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Преобразувайте границата.
\sin(\theta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Използвайте факта, че \theta е константа, когато изчислявате границите, когато h се стреми към 0.
\sin(\theta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta )
Границата \lim_{\theta \to 0}\frac{\sin(\theta )}{\theta } е 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
За да изчислите границата на \lim_{h\to 0}\frac{\cos(h)-1}{h}, първо умножете числител и знаменател по \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Умножете \cos(h)+1 по \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Използвайте питагоровото тъждество.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Преобразувайте границата.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Границата \lim_{\theta \to 0}\frac{\sin(\theta )}{\theta } е 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Използвайте факта, че \frac{\sin(h)}{\cos(h)+1} е непрекъсната в 0.
\cos(\theta )
Заместете стойността 0 в израза \sin(\theta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta ).