Решаване за r
r = \frac{4}{\pi} \approx 1,273239545
Дял
Копирано в клипборда
\pi r=4
Променливата r не може да бъде равна на 0, тъй като делението на нула не е дефинирано. Умножете и двете страни на уравнението по r.
\frac{\pi r}{\pi }=\frac{4}{\pi }
Разделете двете страни на \pi .
r=\frac{4}{\pi }
Делението на \pi отменя умножението по \pi .
r=\frac{4}{\pi }\text{, }r\neq 0
Променливата r не може да бъде равна на 0.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}