Решаване за P (complex solution)
\left\{\begin{matrix}P=0\text{, }&p\neq 0\\P\in \mathrm{C}\text{, }&p=\frac{3025}{1086}\end{matrix}\right,
Решаване за P
\left\{\begin{matrix}P=0\text{, }&p\neq 0\\P\in \mathrm{R}\text{, }&p=\frac{3025}{1086}\end{matrix}\right,
Решаване за p
\left\{\begin{matrix}\\p=\frac{3025}{1086}\text{, }&\text{unconditionally}\\p\neq 0\text{, }&P=0\end{matrix}\right,
Дял
Копирано в клипборда
\left(173-47\times 73+0\times 1p^{12}+\frac{9075}{p}\right)Pp=0
Умножете и двете страни на уравнението по p.
\left(173-3431+0\times 1p^{12}+\frac{9075}{p}\right)Pp=0
Умножете 47 по 73, за да получите 3431.
\left(-3258+0\times 1p^{12}+\frac{9075}{p}\right)Pp=0
Извадете 3431 от 173, за да получите -3258.
\left(-3258+0p^{12}+\frac{9075}{p}\right)Pp=0
Умножете 0 по 1, за да получите 0.
\left(-3258+0+\frac{9075}{p}\right)Pp=0
Нещо по нула дава нула.
\left(-3258+\frac{9075}{p}\right)Pp=0
Съберете -3258 и 0, за да се получи -3258.
\left(-\frac{3258p}{p}+\frac{9075}{p}\right)Pp=0
За да съберете или извадите изрази, приведете ги към общ знаменател. Умножете -3258 по \frac{p}{p}.
\frac{-3258p+9075}{p}Pp=0
Тъй като -\frac{3258p}{p} и \frac{9075}{p} имат един и същ знаменател, съберете ги, като съберете техните числители.
\frac{\left(-3258p+9075\right)P}{p}p=0
Изразете \frac{-3258p+9075}{p}P като една дроб.
\frac{\left(-3258p+9075\right)Pp}{p}=0
Изразете \frac{\left(-3258p+9075\right)P}{p}p като една дроб.
P\left(-3258p+9075\right)=0
Съкращаване на p в числителя и знаменателя.
-3258Pp+9075P=0
Използвайте дистрибутивното свойство, за да умножите P по -3258p+9075.
\left(-3258p+9075\right)P=0
Групирайте всички членове, съдържащи P.
\left(9075-3258p\right)P=0
Уравнението е в стандартна форма.
P=0
Разделете 0 на -3258p+9075.
\left(173-47\times 73+0\times 1p^{12}+\frac{9075}{p}\right)Pp=0
Умножете и двете страни на уравнението по p.
\left(173-3431+0\times 1p^{12}+\frac{9075}{p}\right)Pp=0
Умножете 47 по 73, за да получите 3431.
\left(-3258+0\times 1p^{12}+\frac{9075}{p}\right)Pp=0
Извадете 3431 от 173, за да получите -3258.
\left(-3258+0p^{12}+\frac{9075}{p}\right)Pp=0
Умножете 0 по 1, за да получите 0.
\left(-3258+0+\frac{9075}{p}\right)Pp=0
Нещо по нула дава нула.
\left(-3258+\frac{9075}{p}\right)Pp=0
Съберете -3258 и 0, за да се получи -3258.
\left(-\frac{3258p}{p}+\frac{9075}{p}\right)Pp=0
За да съберете или извадите изрази, приведете ги към общ знаменател. Умножете -3258 по \frac{p}{p}.
\frac{-3258p+9075}{p}Pp=0
Тъй като -\frac{3258p}{p} и \frac{9075}{p} имат един и същ знаменател, съберете ги, като съберете техните числители.
\frac{\left(-3258p+9075\right)P}{p}p=0
Изразете \frac{-3258p+9075}{p}P като една дроб.
\frac{\left(-3258p+9075\right)Pp}{p}=0
Изразете \frac{\left(-3258p+9075\right)P}{p}p като една дроб.
P\left(-3258p+9075\right)=0
Съкращаване на p в числителя и знаменателя.
-3258Pp+9075P=0
Използвайте дистрибутивното свойство, за да умножите P по -3258p+9075.
\left(-3258p+9075\right)P=0
Групирайте всички членове, съдържащи P.
\left(9075-3258p\right)P=0
Уравнението е в стандартна форма.
P=0
Разделете 0 на -3258p+9075.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}