Решаване за p
p\in \sqrt[3]{2}\sqrt[6]{3}e^{\frac{\left(\arctan(\frac{\sqrt{23}}{5})+\pi \right)i}{3}},\sqrt[3]{2}\sqrt[6]{3}e^{\frac{\arctan(\frac{\sqrt{23}}{5})i+5\pi i}{3}},\sqrt[3]{2}\sqrt[6]{3}e^{\frac{\arctan(\frac{\sqrt{23}}{5})i+3\pi i}{3}},\sqrt[3]{2}\sqrt[6]{3}e^{\frac{-\arctan(\frac{\sqrt{23}}{5})i+5\pi i}{3}},\sqrt[3]{2}\sqrt[6]{3}e^{\frac{-\arctan(\frac{\sqrt{23}}{5})i+\pi i}{3}},\sqrt[3]{2}\sqrt[6]{3}e^{\frac{-\arctan(\frac{\sqrt{23}}{5})i+3\pi i}{3}}
Дял
Копирано в клипборда
t^{2}+5t+12=0
Заместете p^{3} с t.
t=\frac{-5±\sqrt{5^{2}-4\times 1\times 12}}{2}
Всички уравнения от вида ax^{2}+bx+c=0 могат да бъдат решени чрез формулата за решаване на квадратно уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Заместете 1 за a, 5 за b и 12 за c във формулата за решаване на квадратно уравнение.
t=\frac{-5±\sqrt{-23}}{2}
Извършете изчисленията.
t=\frac{-5+\sqrt{23}i}{2} t=\frac{-\sqrt{23}i-5}{2}
Решете уравнението t=\frac{-5±\sqrt{-23}}{2}, когато ± е плюс и когато ± е минус.
p=\sqrt[3]{2}\sqrt[6]{3}e^{\frac{-\arctan(\frac{\sqrt{23}}{5})i+5\pi i}{3}} p=\sqrt[3]{2}\sqrt[6]{3}e^{\frac{-\arctan(\frac{\sqrt{23}}{5})i+3\pi i}{3}} p=\sqrt[3]{2}\sqrt[6]{3}e^{\frac{-\arctan(\frac{\sqrt{23}}{5})i+\pi i}{3}} p=\sqrt[3]{2}\sqrt[6]{3}e^{\frac{\arctan(\frac{\sqrt{23}}{5})i+5\pi i}{3}} p=\sqrt[3]{2}\sqrt[6]{3}e^{\frac{\arctan(\frac{\sqrt{23}}{5})i+3\pi i}{3}} p=\sqrt[3]{2}\sqrt[6]{3}e^{\frac{\left(\arctan(\frac{\sqrt{23}}{5})+\pi \right)i}{3}}
Тъй като p=t^{3}, решенията са получени чрез решаване на уравнението за всеки t.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}