Изчисляване
\frac{2\cos(5)+195-2\cos(10)}{2}\approx 98,622733715
Дял
Копирано в клипборда
\int x+\sin(x)+12\mathrm{d}x
Първо изчислете неопределената интегрална част.
\int x\mathrm{d}x+\int \sin(x)\mathrm{d}x+\int 12\mathrm{d}x
Интегриране на общата сума по израз.
\frac{x^{2}}{2}+\int \sin(x)\mathrm{d}x+\int 12\mathrm{d}x
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x\mathrm{d}x с \frac{x^{2}}{2}.
\frac{x^{2}}{2}-\cos(x)+\int 12\mathrm{d}x
Използвайте \int \sin(x)\mathrm{d}x=-\cos(x) от таблицата с общи интеграли, за да получите резултата.
\frac{x^{2}}{2}-\cos(x)+12x
Намиране на интеграла на 12, като се използва таблицата с общи интегрални правила \int a\mathrm{d}x=ax.
\frac{10^{2}}{2}-\cos(10)+10\times 12-\left(\frac{5^{2}}{2}-\cos(5)+5\times 12\right)
Определеният интеграл е първообразът на израза, изчислен за горната граница на интегриране, минус първообраза, изчислен за долната граница на интегриране.
\frac{1}{2}\left(-2\cos(10)+195+2\cos(5)\right)
Опростявайте.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}