Премини към основното съдържание
Изчисляване
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

\int _{2}^{7}\left(4112x-\left(-\left(x-2\right)\left(x-2\right)\right)\right)\times \frac{7}{23}\mathrm{d}x
Съкращаване на 2 и 2.
\int _{2}^{7}\left(4112x-\left(-\left(x-2\right)x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Използвайте дистрибутивното свойство, за да умножите -\left(x-2\right) по x-2.
\int _{2}^{7}\left(4112x-\left(\left(-x+2\right)x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Използвайте дистрибутивното свойство, за да умножите -1 по x-2.
\int _{2}^{7}\left(4112x-\left(-x^{2}+2x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Използвайте дистрибутивното свойство, за да умножите -x+2 по x.
\int _{2}^{7}\left(4112x-\left(-x^{2}+4x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Групирайте 2x и 2x, за да получите 4x.
\int _{2}^{7}\left(4112x-\left(-x^{2}\right)-4x-\left(-4\right)\right)\times \frac{7}{23}\mathrm{d}x
За да намерите противоположната стойност на -x^{2}+4x-4, намерете противоположната стойност на всеки член.
\int _{2}^{7}\left(4112x+x^{2}-4x-\left(-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Противоположното на -x^{2} е x^{2}.
\int _{2}^{7}\left(4112x+x^{2}-4x+4\right)\times \frac{7}{23}\mathrm{d}x
Противоположното на -4 е 4.
\int _{2}^{7}\left(4108x+x^{2}+4\right)\times \frac{7}{23}\mathrm{d}x
Групирайте 4112x и -4x, за да получите 4108x.
\int _{2}^{7}4108x\times \frac{7}{23}+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
Използвайте дистрибутивното свойство, за да умножите 4108x+x^{2}+4 по \frac{7}{23}.
\int _{2}^{7}\frac{4108\times 7}{23}x+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
Изразете 4108\times \frac{7}{23} като една дроб.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
Умножете 4108 по 7, за да получите 28756.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+\frac{4\times 7}{23}\mathrm{d}x
Изразете 4\times \frac{7}{23} като една дроб.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+\frac{28}{23}\mathrm{d}x
Умножете 4 по 7, за да получите 28.
\int \frac{28756x+7x^{2}+28}{23}\mathrm{d}x
Първо изчислете неопределената интегрална част.
\int \frac{28756x}{23}\mathrm{d}x+\int \frac{7x^{2}}{23}\mathrm{d}x+\int \frac{28}{23}\mathrm{d}x
Интегриране на общата сума по израз.
\frac{28756\int x\mathrm{d}x}{23}+\frac{7\int x^{2}\mathrm{d}x}{23}+\int \frac{28}{23}\mathrm{d}x
Отчетете константата за всяко едно от условията.
\frac{14378x^{2}}{23}+\frac{7\int x^{2}\mathrm{d}x}{23}+\int \frac{28}{23}\mathrm{d}x
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x\mathrm{d}x с \frac{x^{2}}{2}. Умножете \frac{28756}{23} по \frac{x^{2}}{2}.
\frac{14378x^{2}}{23}+\frac{7x^{3}}{69}+\int \frac{28}{23}\mathrm{d}x
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x^{2}\mathrm{d}x с \frac{x^{3}}{3}. Умножете \frac{7}{23} по \frac{x^{3}}{3}.
\frac{14378x^{2}}{23}+\frac{7x^{3}}{69}+\frac{28x}{23}
Намиране на интеграла на \frac{28}{23}, като се използва таблицата с общи интегрални правила \int a\mathrm{d}x=ax.
\frac{14378}{23}\times 7^{2}+\frac{7}{69}\times 7^{3}+\frac{28}{23}\times 7-\left(\frac{14378}{23}\times 2^{2}+\frac{7}{69}\times 2^{3}+\frac{28}{23}\times 2\right)
Определеният интеграл е първообразът на израза, изчислен за горната граница на интегриране, минус първообраза, изчислен за долната граница на интегриране.
\frac{1943795}{69}
Опростявайте.