Премини към основното съдържание
Изчисляване
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

\int 5-x+2x^{2}-3x^{3}\mathrm{d}x
Първо изчислете неопределената интегрална част.
\int 5\mathrm{d}x+\int -x\mathrm{d}x+\int 2x^{2}\mathrm{d}x+\int -3x^{3}\mathrm{d}x
Интегриране на общата сума по израз.
\int 5\mathrm{d}x-\int x\mathrm{d}x+2\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x
Отчетете константата за всяко едно от условията.
5x-\int x\mathrm{d}x+2\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x
Намиране на интеграла на 5, като се използва таблицата с общи интегрални правила \int a\mathrm{d}x=ax.
5x-\frac{x^{2}}{2}+2\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x\mathrm{d}x с \frac{x^{2}}{2}. Умножете -1 по \frac{x^{2}}{2}.
5x-\frac{x^{2}}{2}+\frac{2x^{3}}{3}-3\int x^{3}\mathrm{d}x
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x^{2}\mathrm{d}x с \frac{x^{3}}{3}. Умножете 2 по \frac{x^{3}}{3}.
5x-\frac{x^{2}}{2}+\frac{2x^{3}}{3}-\frac{3x^{4}}{4}
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x^{3}\mathrm{d}x с \frac{x^{4}}{4}. Умножете -3 по \frac{x^{4}}{4}.
5\times 4-\frac{4^{2}}{2}+\frac{2}{3}\times 4^{3}-\frac{3}{4}\times 4^{4}-\left(5\times 1-\frac{1^{2}}{2}+\frac{2}{3}\times 1^{3}-\frac{3}{4}\times 1^{4}\right)
Определеният интеграл е първообразът на израза, изчислен за горната граница на интегриране, минус първообраза, изчислен за долната граница на интегриране.
-\frac{567}{4}
Опростявайте.