Изчисляване
\frac{11}{2}=5,5
Дял
Копирано в клипборда
\int 3t^{2}-t\mathrm{d}t
Първо изчислете неопределената интегрална част.
\int 3t^{2}\mathrm{d}t+\int -t\mathrm{d}t
Интегриране на общата сума по израз.
3\int t^{2}\mathrm{d}t-\int t\mathrm{d}t
Отчетете константата за всяко едно от условията.
t^{3}-\int t\mathrm{d}t
Тъй като \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} за k\neq -1, заместете \int t^{2}\mathrm{d}t с \frac{t^{3}}{3}. Умножете 3 по \frac{t^{3}}{3}.
t^{3}-\frac{t^{2}}{2}
Тъй като \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} за k\neq -1, заместете \int t\mathrm{d}t с \frac{t^{2}}{2}. Умножете -1 по \frac{t^{2}}{2}.
2^{3}-\frac{2^{2}}{2}-\left(1^{3}-\frac{1^{2}}{2}\right)
Определеният интеграл е първообразът на израза, изчислен за горната граница на интегриране, минус първообраза, изчислен за долната граница на интегриране.
\frac{11}{2}
Опростявайте.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}