Премини към основното съдържание
Изчисляване
Tick mark Image
Диференциране по отношение на x
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

\int x^{3}-9x^{2}+27x-27\mathrm{d}x
Използвайте Нютоновия бином \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}, за да разложите \left(x-3\right)^{3}.
\int x^{3}\mathrm{d}x+\int -9x^{2}\mathrm{d}x+\int 27x\mathrm{d}x+\int -27\mathrm{d}x
Интегриране на общата сума по израз.
\int x^{3}\mathrm{d}x-9\int x^{2}\mathrm{d}x+27\int x\mathrm{d}x+\int -27\mathrm{d}x
Отчетете константата за всяко едно от условията.
\frac{x^{4}}{4}-9\int x^{2}\mathrm{d}x+27\int x\mathrm{d}x+\int -27\mathrm{d}x
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x^{3}\mathrm{d}x с \frac{x^{4}}{4}.
\frac{x^{4}}{4}-3x^{3}+27\int x\mathrm{d}x+\int -27\mathrm{d}x
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x^{2}\mathrm{d}x с \frac{x^{3}}{3}. Умножете -9 по \frac{x^{3}}{3}.
\frac{x^{4}}{4}-3x^{3}+\frac{27x^{2}}{2}+\int -27\mathrm{d}x
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x\mathrm{d}x с \frac{x^{2}}{2}. Умножете 27 по \frac{x^{2}}{2}.
\frac{x^{4}}{4}-3x^{3}+\frac{27x^{2}}{2}-27x
Намиране на интеграла на -27, като се използва таблицата с общи интегрални правила \int a\mathrm{d}x=ax.
\frac{x^{4}}{4}-3x^{3}+\frac{27x^{2}}{2}-27x+С
Ако F\left(x\right) е антидериват на f\left(x\right), то наборът от всички антипроизводни на f\left(x\right) е даден от F\left(x\right)+C. Ето защо, добавете константата на интеграцията C\in \mathrm{R} към резултата.