Изчисляване
\frac{x^{4}}{2}+64x+С
Диференциране по отношение на x
2\left(x^{3}+32\right)
Дял
Копирано в клипборда
\int x^{3}-3x^{2}+3x-1+\left(x-1\right)^{2}-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Използвайте Нютоновия бином \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}, за да разложите \left(x-1\right)^{3}.
\int x^{3}-3x^{2}+3x-1+x^{2}-2x+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Използвайте Нютоновия бином \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, за да разложите \left(x-1\right)^{2}.
\int x^{3}-2x^{2}+3x-1-2x+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Групирайте -3x^{2} и x^{2}, за да получите -2x^{2}.
\int x^{3}-2x^{2}+x-1+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Групирайте 3x и -2x, за да получите x.
\int x^{3}-2x^{2}+x-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Съберете -1 и 1, за да се получи 0.
\int x^{3}-2x^{2}+x-x+\left(4x-x^{2}\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Използвайте дистрибутивното свойство, за да умножите x по 4-x.
\int x^{3}-2x^{2}+x-x+16x-x^{3}+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Използвайте дистрибутивното свойство, за да умножите 4x-x^{2} по 4+x и да групирате подобните членове.
\int x^{3}-2x^{2}+17x-x-x^{3}+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Групирайте x и 16x, за да получите 17x.
\int -2x^{2}+17x-x+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Групирайте x^{3} и -x^{3}, за да получите 0.
\int -2x^{2}+17x-x+x^{4}+2x^{3}-15x^{2}-16x+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Повдигане на квадрат на 8-x-x^{2}.
\int -17x^{2}+17x-x+x^{4}+2x^{3}-16x+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Групирайте -2x^{2} и -15x^{2}, за да получите -17x^{2}.
\int -17x^{2}+x-x+x^{4}+2x^{3}+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Групирайте 17x и -16x, за да получите x.
\int -17x^{2}+x-x+x^{4}+2x^{3}+64+17x^{2}-x^{4}\mathrm{d}x
Използвайте дистрибутивното свойство, за да умножите x^{2} по 17-x^{2}.
\int x-x+x^{4}+2x^{3}+64-x^{4}\mathrm{d}x
Групирайте -17x^{2} и 17x^{2}, за да получите 0.
\int x-x+2x^{3}+64\mathrm{d}x
Групирайте x^{4} и -x^{4}, за да получите 0.
\int 2x^{3}+64\mathrm{d}x
Групирайте x и -x, за да получите 0.
\int 2x^{3}\mathrm{d}x+\int 64\mathrm{d}x
Интегриране на общата сума по израз.
2\int x^{3}\mathrm{d}x+\int 64\mathrm{d}x
Отчетете константата за всяко едно от условията.
\frac{x^{4}}{2}+\int 64\mathrm{d}x
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x^{3}\mathrm{d}x с \frac{x^{4}}{4}. Умножете 2 по \frac{x^{4}}{4}.
\frac{x^{4}}{2}+64x
Намиране на интеграла на 64, като се използва таблицата с общи интегрални правила \int a\mathrm{d}x=ax.
64x+\frac{x^{4}}{2}+С
Ако F\left(x\right) е антидериват на f\left(x\right), то наборът от всички антипроизводни на f\left(x\right) е даден от F\left(x\right)+C. Ето защо, добавете константата на интеграцията C\in \mathrm{R} към резултата.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}