Премини към основното съдържание
Изчисляване
Tick mark Image
Диференциране по отношение на x
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

\int x^{3}-3x^{2}+3x-1+\left(x-1\right)^{2}-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Използвайте Нютоновия бином \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}, за да разложите \left(x-1\right)^{3}.
\int x^{3}-3x^{2}+3x-1+x^{2}-2x+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Използвайте Нютоновия бином \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, за да разложите \left(x-1\right)^{2}.
\int x^{3}-2x^{2}+3x-1-2x+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Групирайте -3x^{2} и x^{2}, за да получите -2x^{2}.
\int x^{3}-2x^{2}+x-1+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Групирайте 3x и -2x, за да получите x.
\int x^{3}-2x^{2}+x-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Съберете -1 и 1, за да се получи 0.
\int x^{3}-2x^{2}+x-x+\left(4x-x^{2}\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Използвайте дистрибутивното свойство, за да умножите x по 4-x.
\int x^{3}-2x^{2}+x-x+16x-x^{3}+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Използвайте дистрибутивното свойство, за да умножите 4x-x^{2} по 4+x и да групирате подобните членове.
\int x^{3}-2x^{2}+17x-x-x^{3}+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Групирайте x и 16x, за да получите 17x.
\int -2x^{2}+17x-x+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Групирайте x^{3} и -x^{3}, за да получите 0.
\int -2x^{2}+17x-x+x^{4}+2x^{3}-15x^{2}-16x+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Повдигане на квадрат на 8-x-x^{2}.
\int -17x^{2}+17x-x+x^{4}+2x^{3}-16x+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Групирайте -2x^{2} и -15x^{2}, за да получите -17x^{2}.
\int -17x^{2}+x-x+x^{4}+2x^{3}+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Групирайте 17x и -16x, за да получите x.
\int -17x^{2}+x-x+x^{4}+2x^{3}+64+17x^{2}-x^{4}\mathrm{d}x
Използвайте дистрибутивното свойство, за да умножите x^{2} по 17-x^{2}.
\int x-x+x^{4}+2x^{3}+64-x^{4}\mathrm{d}x
Групирайте -17x^{2} и 17x^{2}, за да получите 0.
\int x-x+2x^{3}+64\mathrm{d}x
Групирайте x^{4} и -x^{4}, за да получите 0.
\int 2x^{3}+64\mathrm{d}x
Групирайте x и -x, за да получите 0.
\int 2x^{3}\mathrm{d}x+\int 64\mathrm{d}x
Интегриране на общата сума по израз.
2\int x^{3}\mathrm{d}x+\int 64\mathrm{d}x
Отчетете константата за всяко едно от условията.
\frac{x^{4}}{2}+\int 64\mathrm{d}x
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x^{3}\mathrm{d}x с \frac{x^{4}}{4}. Умножете 2 по \frac{x^{4}}{4}.
\frac{x^{4}}{2}+64x
Намиране на интеграла на 64, като се използва таблицата с общи интегрални правила \int a\mathrm{d}x=ax.
64x+\frac{x^{4}}{2}+С
Ако F\left(x\right) е антидериват на f\left(x\right), то наборът от всички антипроизводни на f\left(x\right) е даден от F\left(x\right)+C. Ето защо, добавете константата на интеграцията C\in \mathrm{R} към резултата.