Премини към основното съдържание
Изчисляване
Tick mark Image
Диференциране по отношение на x
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

\int 1-2\sqrt[3]{x^{2}}+\left(\sqrt[3]{x^{2}}\right)^{2}\mathrm{d}x
Използвайте Нютоновия бином \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, за да разложите \left(1-\sqrt[3]{x^{2}}\right)^{2}.
\int 1\mathrm{d}x+\int -2x^{\frac{2}{3}}\mathrm{d}x+\int x^{\frac{4}{3}}\mathrm{d}x
Интегриране на общата сума по израз.
\int 1\mathrm{d}x-2\int x^{\frac{2}{3}}\mathrm{d}x+\int x^{\frac{4}{3}}\mathrm{d}x
Отчетете константата за всяко едно от условията.
x-2\int x^{\frac{2}{3}}\mathrm{d}x+\int x^{\frac{4}{3}}\mathrm{d}x
Намиране на интеграла на 1, като се използва таблицата с общи интегрални правила \int a\mathrm{d}x=ax.
x-\frac{6x^{\frac{5}{3}}}{5}+\int x^{\frac{4}{3}}\mathrm{d}x
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x^{\frac{2}{3}}\mathrm{d}x с \frac{3x^{\frac{5}{3}}}{5}. Умножете -2 по \frac{3x^{\frac{5}{3}}}{5}.
x-\frac{6x^{\frac{5}{3}}}{5}+\frac{3x^{\frac{7}{3}}}{7}
Тъй като \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} за k\neq -1, заместете \int x^{\frac{4}{3}}\mathrm{d}x с \frac{3x^{\frac{7}{3}}}{7}.
\frac{3x^{\frac{7}{3}}}{7}-\frac{6x^{\frac{5}{3}}}{5}+x
Опростявайте.
\frac{3x^{\frac{7}{3}}}{7}-\frac{6x^{\frac{5}{3}}}{5}+x+С
Ако F\left(x\right) е антидериват на f\left(x\right), то наборът от всички антипроизводни на f\left(x\right) е даден от F\left(x\right)+C. Ето защо, добавете константата на интеграцията C\in \mathrm{R} към резултата.