Премини към основното съдържание
Изчисляване
Tick mark Image
Диференциране по отношение на x
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

\int \left(-\frac{1}{3}ab^{2}\right)^{2}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Умножете a по a, за да получите a^{2}.
\int \left(-\frac{1}{3}\right)^{2}a^{2}\left(b^{2}\right)^{2}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Разложете \left(-\frac{1}{3}ab^{2}\right)^{2}.
\int \left(-\frac{1}{3}\right)^{2}a^{2}b^{4}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
За да повдигнете едно число, повдигнато на степен, на друга степен, умножете експонентите. Умножете 2 по 2, за да получите 4.
\int \frac{1}{9}a^{2}b^{4}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Изчислявате 2 на степен -\frac{1}{3} и получавате \frac{1}{9}.
\int \frac{1}{9}a^{2}b^{4}-\left(-6a^{2}b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Умножете 2 по -3, за да получите -6.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}\left(a^{2}\right)^{2}\left(b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Разложете \left(-6a^{2}b^{2}\right)^{2}.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}a^{4}\left(b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
За да повдигнете едно число, повдигнато на степен, на друга степен, умножете експонентите. Умножете 2 по 2, за да получите 4.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}a^{4}b^{4}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
За да повдигнете едно число, повдигнато на степен, на друга степен, умножете експонентите. Умножете 2 по 2, за да получите 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Изчислявате 2 на степен -6 и получавате 36.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(2^{2}a^{2}\left(b^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Разложете \left(2ab^{2}\right)^{2}.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(2^{2}a^{2}b^{4}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
За да повдигнете едно число, повдигнато на степен, на друга степен, умножете експонентите. Умножете 2 по 2, за да получите 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(4a^{2}b^{4}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Изчислявате 2 на степен 2 и получавате 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(-36a^{2}b^{4}a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Умножете 4 по -9, за да получите -36.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(-36a^{4}b^{4}+a^{2}b^{4}\right)\mathrm{d}x
За да умножите степени с една и съща основа, съберете техните експоненти. Съберете 2 и 2, за да получите 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}+36a^{4}b^{4}-a^{2}b^{4}\mathrm{d}x
За да намерите противоположната стойност на -36a^{4}b^{4}+a^{2}b^{4}, намерете противоположната стойност на всеки член.
\int \frac{1}{9}a^{2}b^{4}-a^{2}b^{4}\mathrm{d}x
Групирайте -36a^{4}b^{4} и 36a^{4}b^{4}, за да получите 0.
\int -\frac{8}{9}a^{2}b^{4}\mathrm{d}x
Групирайте \frac{1}{9}a^{2}b^{4} и -a^{2}b^{4}, за да получите -\frac{8}{9}a^{2}b^{4}.
\left(-\frac{8a^{2}b^{4}}{9}\right)x
Намиране на интеграла на -\frac{8a^{2}b^{4}}{9}, като се използва таблицата с общи интегрални правила \int a\mathrm{d}x=ax.
-\frac{8a^{2}b^{4}x}{9}
Опростявайте.
-\frac{8a^{2}b^{4}x}{9}+С
Ако F\left(x\right) е антидериват на f\left(x\right), то наборът от всички антипроизводни на f\left(x\right) е даден от F\left(x\right)+C. Ето защо, добавете константата на интеграцията C\in \mathrm{R} към резултата.