Премини към основното съдържание
Изчисляване
Tick mark Image
Диференциране по отношение на x
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
За да съберете или извадите изрази, приведете ги към общ знаменател. Умножете -a-1 по \frac{a+1}{a+1}.
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Тъй като \frac{2a+10}{a+1} и \frac{\left(-a-1\right)\left(a+1\right)}{a+1} имат един и същ знаменател, съберете ги, като съберете техните числители.
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Извършете умноженията в 2a+10+\left(-a-1\right)\left(a+1\right).
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Обединете подобните членове в 2a+10-a^{2}-a-a-1.
\int \left(\frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Разделете \frac{a^{2}-5a+6}{a^{2}+7a+6} на \frac{9-a^{2}}{a+1} чрез умножаване на \frac{a^{2}-5a+6}{a^{2}+7a+6} по обратната стойност на \frac{9-a^{2}}{a+1}.
\int \left(\frac{\left(a-3\right)\left(a-2\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(a+1\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Разложете на множители изразите, които все още не са разложени на множители, в \frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}.
\int \left(\frac{a-2}{\left(-a-3\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Съкращаване на \left(a-3\right)\left(a+1\right) в числителя и знаменателя.
\int \left(\frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)}+\frac{a+6}{\left(a+3\right)\left(a+6\right)}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
За да съберете или извадите изрази, приведете ги към общ знаменател. Най-малкото общо кратно на \left(-a-3\right)\left(a+6\right) и a+3 е \left(a+3\right)\left(a+6\right). Умножете \frac{a-2}{\left(-a-3\right)\left(a+6\right)} по \frac{-1}{-1}. Умножете \frac{1}{a+3} по \frac{a+6}{a+6}.
\int \frac{-\left(a-2\right)+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Тъй като \frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)} и \frac{a+6}{\left(a+3\right)\left(a+6\right)} имат един и същ знаменател, съберете ги, като съберете техните числители.
\int \frac{-a+2+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Извършете умноженията в -\left(a-2\right)+a+6.
\int \frac{8}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Обединете подобните членове в -a+2+a+6.
\int \frac{8\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)\times 2a^{2}}\mathrm{d}x
Умножете \frac{8}{\left(a+3\right)\left(a+6\right)} по \frac{2a^{2}+5a-3}{2a^{2}}, като умножавате числител по числител и знаменател по знаменател.
\int \frac{4\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}\mathrm{d}x
Съкращаване на 2 в числителя и знаменателя.
\int \frac{4\left(2a-1\right)\left(a+3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}\mathrm{d}x
Разложете на множители изразите, които все още не са разложени на множители, в \frac{4\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}.
\int \frac{4\left(2a-1\right)}{\left(a+6\right)a^{2}}\mathrm{d}x
Съкращаване на a+3 в числителя и знаменателя.
\int \frac{8a-4}{\left(a+6\right)a^{2}}\mathrm{d}x
Използвайте дистрибутивното свойство, за да умножите 4 по 2a-1.
\int \frac{8a-4}{a^{3}+6a^{2}}\mathrm{d}x
Използвайте дистрибутивното свойство, за да умножите a+6 по a^{2}.
\frac{8a-4}{a^{3}+6a^{2}}x
Намиране на интеграла на \frac{8a-4}{a^{3}+6a^{2}}, като се използва таблицата с общи интегрални правила \int a\mathrm{d}x=ax.
\frac{\left(8a-4\right)x}{a^{3}+6a^{2}}
Опростявайте.
\frac{\left(8a-4\right)x}{a^{3}+6a^{2}}+С
Ако F\left(x\right) е антидериват на f\left(x\right), то наборът от всички антипроизводни на f\left(x\right) е даден от F\left(x\right)+C. Ето защо, добавете константата на интеграцията C\in \mathrm{R} към резултата.