Решаване за q
q=\left(2-\sqrt{3}\right)p
p\neq 0
Решаване за p
p=\left(\sqrt{3}+2\right)q
q\neq 0
Дял
Копирано в клипборда
q\left(\sqrt{3}+2\right)=p
Променливата q не може да бъде равна на 0, тъй като делението на нула не е дефинирано. Умножете и двете страни на уравнението по q.
q\sqrt{3}+2q=p
Използвайте дистрибутивното свойство, за да умножите q по \sqrt{3}+2.
\left(\sqrt{3}+2\right)q=p
Групирайте всички членове, съдържащи q.
\frac{\left(\sqrt{3}+2\right)q}{\sqrt{3}+2}=\frac{p}{\sqrt{3}+2}
Разделете двете страни на \sqrt{3}+2.
q=\frac{p}{\sqrt{3}+2}
Делението на \sqrt{3}+2 отменя умножението по \sqrt{3}+2.
q=-\left(\sqrt{3}-2\right)p
Разделете p на \sqrt{3}+2.
q=-\left(\sqrt{3}-2\right)p\text{, }q\neq 0
Променливата q не може да бъде равна на 0.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}