\frac{ \sin ( x ) }{ \frac{ }{ } }
Диференциране по отношение на x
\cos(x)
Изчисляване
\sin(x)
Граф
Дял
Копирано в клипборда
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\sin(x)}{1})
Разделете 1 на 1, за да получите 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))
Всяко число, разделено на едно, дава себе си.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))=\left(\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}\right)
За функция f\left(x\right), производната е границата на \frac{f\left(x+h\right)-f\left(x\right)}{h}, като h дава 0, ако тази граница съществува.
\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}
Използвайте формулата на сума за синус.
\lim_{h\to 0}\frac{\sin(x)\left(\cos(h)-1\right)+\cos(x)\sin(h)}{h}
Разложете на множители \sin(x).
\left(\lim_{h\to 0}\sin(x)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(x)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Преобразувайте границата.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Използвайте факта, че x е константа, когато изчислявате границите, когато h се стреми към 0.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)
Границата \lim_{x\to 0}\frac{\sin(x)}{x} е 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
За да изчислите границата на \lim_{h\to 0}\frac{\cos(h)-1}{h}, първо умножете числител и знаменател по \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Умножете \cos(h)+1 по \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Използвайте питагоровото тъждество.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Преобразувайте границата.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Границата \lim_{x\to 0}\frac{\sin(x)}{x} е 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Използвайте факта, че \frac{\sin(h)}{\cos(h)+1} е непрекъсната в 0.
\cos(x)
Заместете стойността 0 в израза \sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x).
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}