Решаване за x
x\in \left(-\infty,\frac{2}{3}\right)\cup \left(\frac{9}{2},\infty\right)
Граф
Дял
Копирано в клипборда
\frac{x+7}{3x-2}-\frac{3x-2}{3x-2}<0
За да съберете или извадите изрази, приведете ги към общ знаменател. Умножете 1 по \frac{3x-2}{3x-2}.
\frac{x+7-\left(3x-2\right)}{3x-2}<0
Тъй като \frac{x+7}{3x-2} и \frac{3x-2}{3x-2} имат един и същ знаменател, извадете ги, като извадите техните числители.
\frac{x+7-3x+2}{3x-2}<0
Извършете умноженията в x+7-\left(3x-2\right).
\frac{-2x+9}{3x-2}<0
Обединете подобните членове в x+7-3x+2.
9-2x>0 3x-2<0
За коефициента, който трябва да бъде отрицателен, 9-2x и 3x-2 трябва да бъде от противоположните знаци. Разгледайте случая, когато 9-2x е положително, а 3x-2 е отрицателно.
x<\frac{2}{3}
Решението, удовлетворяващо и двете неравенства, е x<\frac{2}{3}.
3x-2>0 9-2x<0
Разгледайте случая, когато 3x-2 е положително, а 9-2x е отрицателно.
x>\frac{9}{2}
Решението, удовлетворяващо и двете неравенства, е x>\frac{9}{2}.
x<\frac{2}{3}\text{; }x>\frac{9}{2}
Крайното решение е обединението на получените решения.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}