Изчисляване
-\frac{m\left(m+n\right)}{n}
Разлагане
-\frac{m^{2}+mn}{n}
Дял
Копирано в клипборда
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
За да съберете или извадите изрази, приведете ги към общ знаменател. Умножете n по \frac{n-m}{n-m}.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Тъй като \frac{n\left(n-m\right)}{n-m} и \frac{n^{2}}{n-m} имат един и същ знаменател, извадете ги, като извадите техните числители.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Извършете умноженията в n\left(n-m\right)-n^{2}.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Обединете подобните членове в n^{2}-nm-n^{2}.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Разложете на множители n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
За да съберете или извадите изрази, приведете ги към общ знаменател. Умножете 1 по \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Тъй като \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} и \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} имат един и същ знаменател, съберете ги, като съберете техните числители.
\frac{\frac{-nm}{n-m}}{\frac{-m^{2}+mn-nm+n^{2}+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Извършете умноженията в \left(m+n\right)\left(-m+n\right)+m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Обединете подобните членове в -m^{2}+mn-nm+n^{2}+m^{2}.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
Разделете \frac{-nm}{n-m} на \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} чрез умножаване на \frac{-nm}{n-m} по обратната стойност на \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}.
\frac{-m\left(m+n\right)}{n}
Съкращаване на n\left(-m+n\right) в числителя и знаменателя.
\frac{-m^{2}-mn}{n}
Използвайте дистрибутивното свойство, за да умножите -m по m+n.
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
За да съберете или извадите изрази, приведете ги към общ знаменател. Умножете n по \frac{n-m}{n-m}.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Тъй като \frac{n\left(n-m\right)}{n-m} и \frac{n^{2}}{n-m} имат един и същ знаменател, извадете ги, като извадите техните числители.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Извършете умноженията в n\left(n-m\right)-n^{2}.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Обединете подобните членове в n^{2}-nm-n^{2}.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Разложете на множители n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
За да съберете или извадите изрази, приведете ги към общ знаменател. Умножете 1 по \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Тъй като \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} и \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} имат един и същ знаменател, съберете ги, като съберете техните числители.
\frac{\frac{-nm}{n-m}}{\frac{-m^{2}+mn-nm+n^{2}+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Извършете умноженията в \left(m+n\right)\left(-m+n\right)+m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Обединете подобните членове в -m^{2}+mn-nm+n^{2}+m^{2}.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
Разделете \frac{-nm}{n-m} на \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} чрез умножаване на \frac{-nm}{n-m} по обратната стойност на \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}.
\frac{-m\left(m+n\right)}{n}
Съкращаване на n\left(-m+n\right) в числителя и знаменателя.
\frac{-m^{2}-mn}{n}
Използвайте дистрибутивното свойство, за да умножите -m по m+n.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}