Премини към основното съдържание
Изчисляване
Tick mark Image
Диференциране по отношение на x
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{2}}{\left(\sqrt{x+3}\right)^{2}})
За да повдигнете \frac{1}{\sqrt{x+3}} на степен, повдигнете числителя и знаменателя на тази степен и след това ги разделете.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(\sqrt{x+3}\right)^{2}})
Изчислявате 2 на степен 1 и получавате 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+3})
Изчислявате 2 на степен \sqrt{x+3} и получавате x+3.
-\left(x^{1}+3\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)
Ако F е в композиция от две диференцируеми функции f\left(u\right) и u=g\left(x\right), тоест ако F\left(x\right)=f\left(g\left(x\right)\right), тогава производната на F е производната на на f по отношение на u, умножена по производната на g по отношение на x, тоест \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{1}+3\right)^{-2}x^{1-1}
Производната на полином е сумата от производните на членовете му. Производната на константен член е 0. Производната на ax^{n} е nax^{n-1}.
-x^{0}\left(x^{1}+3\right)^{-2}
Опростявайте.
-x^{0}\left(x+3\right)^{-2}
За всеки член t t^{1}=t.
-\left(x+3\right)^{-2}
За всеки член t с изключение на 0, t^{0}=1.