Премини към основното съдържание
Изчисляване
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

\frac{3\sqrt{3}-2}{2\sqrt{7}+1}\times 1
Разделете 2\sqrt{7}-1 на 2\sqrt{7}-1, за да получите 1.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{\left(2\sqrt{7}+1\right)\left(2\sqrt{7}-1\right)}\times 1
Рационализиране на знаменателя на \frac{3\sqrt{3}-2}{2\sqrt{7}+1}, като се умножи числител и знаменател по 2\sqrt{7}-1.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{\left(2\sqrt{7}\right)^{2}-1^{2}}\times 1
Сметнете \left(2\sqrt{7}+1\right)\left(2\sqrt{7}-1\right). Умножението може да бъде преобразувано в разлика на квадрати с помощта на правилото: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{2^{2}\left(\sqrt{7}\right)^{2}-1^{2}}\times 1
Разложете \left(2\sqrt{7}\right)^{2}.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{4\left(\sqrt{7}\right)^{2}-1^{2}}\times 1
Изчислявате 2 на степен 2 и получавате 4.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{4\times 7-1^{2}}\times 1
Квадратът на \sqrt{7} е 7.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{28-1^{2}}\times 1
Умножете 4 по 7, за да получите 28.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{28-1}\times 1
Изчислявате 2 на степен 1 и получавате 1.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{27}\times 1
Извадете 1 от 28, за да получите 27.
\frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{27}
Изразете \frac{\left(3\sqrt{3}-2\right)\left(2\sqrt{7}-1\right)}{27}\times 1 като една дроб.
\frac{6\sqrt{3}\sqrt{7}-3\sqrt{3}-4\sqrt{7}+2}{27}
Приложете разпределителното свойство, като умножите всеки член на 3\sqrt{3}-2 по всеки член на 2\sqrt{7}-1.
\frac{6\sqrt{21}-3\sqrt{3}-4\sqrt{7}+2}{27}
За да умножите \sqrt{3} и \sqrt{7}, умножете числата под квадратния корен.