Решаване за x
x=-\frac{2}{5}=-0,4
Граф
Дял
Копирано в клипборда
4\left(2x+5\right)=3\left(x+6\right)
Променливата x не може да бъде равна на -6, тъй като делението на нула не е дефинирано. Умножете и двете страни на уравнението с 4\left(x+6\right) – най-малкия общ множител на x+6,4.
8x+20=3\left(x+6\right)
Използвайте дистрибутивното свойство, за да умножите 4 по 2x+5.
8x+20=3x+18
Използвайте дистрибутивното свойство, за да умножите 3 по x+6.
8x+20-3x=18
Извадете 3x и от двете страни.
5x+20=18
Групирайте 8x и -3x, за да получите 5x.
5x=18-20
Извадете 20 и от двете страни.
5x=-2
Извадете 20 от 18, за да получите -2.
x=\frac{-2}{5}
Разделете двете страни на 5.
x=-\frac{2}{5}
Дробта \frac{-2}{5} може да бъде написана като -\frac{2}{5} чрез изваждане на знака минус.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}