Премини към основното съдържание
Изчисляване
Tick mark Image
Диференциране по отношение на x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

\frac{x+1}{\left(x-2\right)\left(x+1\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
За да съберете или извадите изрази, приведете ги към общ знаменател. Най-малкото общо кратно на x-2 и x+1 е \left(x-2\right)\left(x+1\right). Умножете \frac{1}{x-2} по \frac{x+1}{x+1}. Умножете \frac{3}{x+1} по \frac{x-2}{x-2}.
\frac{x+1-3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Тъй като \frac{x+1}{\left(x-2\right)\left(x+1\right)} и \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} имат един и същ знаменател, извадете ги, като извадите техните числители.
\frac{x+1-3x+6}{\left(x-2\right)\left(x+1\right)}
Извършете умноженията в x+1-3\left(x-2\right).
\frac{-2x+7}{\left(x-2\right)\left(x+1\right)}
Обединете подобните членове в x+1-3x+6.
\frac{-2x+7}{x^{2}-x-2}
Разложете \left(x-2\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1}{\left(x-2\right)\left(x+1\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
За да съберете или извадите изрази, приведете ги към общ знаменател. Най-малкото общо кратно на x-2 и x+1 е \left(x-2\right)\left(x+1\right). Умножете \frac{1}{x-2} по \frac{x+1}{x+1}. Умножете \frac{3}{x+1} по \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1-3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Тъй като \frac{x+1}{\left(x-2\right)\left(x+1\right)} и \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} имат един и същ знаменател, извадете ги, като извадите техните числители.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1-3x+6}{\left(x-2\right)\left(x+1\right)})
Извършете умноженията в x+1-3\left(x-2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{\left(x-2\right)\left(x+1\right)})
Обединете подобните членове в x+1-3x+6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{x^{2}+x-2x-2})
Приложете разпределителното свойство, като умножите всеки член на x-2 по всеки член на x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{x^{2}-x-2})
Групирайте x и -2x, за да получите -x.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1}+7)-\left(-2x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
За всеки две диференцируеми функции, производната на частното на две функции е знаменателят, умножен по производната на числителя, минус числителя, умножен по производната на знаменателя, всичко разделено на знаменателя на квадрат.
\frac{\left(x^{2}-x^{1}-2\right)\left(-2\right)x^{1-1}-\left(-2x^{1}+7\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Производната на полином е сумата от производните на членовете му. Производната на константен член е 0. Производната на ax^{n} е nax^{n-1}.
\frac{\left(x^{2}-x^{1}-2\right)\left(-2\right)x^{0}-\left(-2x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Опростявайте.
\frac{x^{2}\left(-2\right)x^{0}-x^{1}\left(-2\right)x^{0}-2\left(-2\right)x^{0}-\left(-2x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Умножете x^{2}-x^{1}-2 по -2x^{0}.
\frac{x^{2}\left(-2\right)x^{0}-x^{1}\left(-2\right)x^{0}-2\left(-2\right)x^{0}-\left(-2x^{1}\times 2x^{1}-2x^{1}\left(-1\right)x^{0}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Умножете -2x^{1}+7 по 2x^{1}-x^{0}.
\frac{-2x^{2}-\left(-2x^{1}\right)-2\left(-2\right)x^{0}-\left(-2\times 2x^{1+1}-2\left(-1\right)x^{1}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
За да умножите степени на една и съща основа, съберете техните експоненти.
\frac{-2x^{2}+2x^{1}+4x^{0}-\left(-4x^{2}+2x^{1}+14x^{1}-7x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Опростявайте.
\frac{2x^{2}-14x^{1}+11x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
Групирайте подобните членове.
\frac{2x^{2}-14x+11x^{0}}{\left(x^{2}-x-2\right)^{2}}
За всеки член t t^{1}=t.
\frac{2x^{2}-14x+11\times 1}{\left(x^{2}-x-2\right)^{2}}
За всеки член t с изключение на 0, t^{0}=1.
\frac{2x^{2}-14x+11}{\left(x^{2}-x-2\right)^{2}}
За всеки член t t\times 1=t и 1t=t.