Премини към основното съдържание
Изчисляване
Tick mark Image
Разлагане на множители
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

\frac{1}{2x}-\frac{1}{2}+\frac{12}{16x^{2}}
Намаляване на дробта \frac{7}{14} до най-малките членове чрез извличане на корен и съкращаване на 7.
\frac{1}{2x}-\frac{x}{2x}+\frac{12}{16x^{2}}
За да съберете или извадите изрази, приведете ги към общ знаменател. Най-малкото общо кратно на 2x и 2 е 2x. Умножете \frac{1}{2} по \frac{x}{x}.
\frac{1-x}{2x}+\frac{12}{16x^{2}}
Тъй като \frac{1}{2x} и \frac{x}{2x} имат един и същ знаменател, извадете ги, като извадите техните числители.
\frac{\left(1-x\right)\times 8x}{16x^{2}}+\frac{12}{16x^{2}}
За да съберете или извадите изрази, приведете ги към общ знаменател. Най-малкото общо кратно на 2x и 16x^{2} е 16x^{2}. Умножете \frac{1-x}{2x} по \frac{8x}{8x}.
\frac{\left(1-x\right)\times 8x+12}{16x^{2}}
Тъй като \frac{\left(1-x\right)\times 8x}{16x^{2}} и \frac{12}{16x^{2}} имат един и същ знаменател, съберете ги, като съберете техните числители.
\frac{8x-8x^{2}+12}{16x^{2}}
Извършете умноженията в \left(1-x\right)\times 8x+12.
\frac{-2\times 4\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{16x^{2}}
Разложете на множители изразите, които все още не са разложени на множители, в \frac{8x-8x^{2}+12}{16x^{2}}.
\frac{-\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{2x^{2}}
Съкращаване на 2\times 4 в числителя и знаменателя.
\frac{\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-2x^{2}}
Съкращаване на -1 в числителя и знаменателя.
\frac{\left(x+\frac{1}{2}\sqrt{7}-\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-2x^{2}}
За да намерите противоположната стойност на -\frac{1}{2}\sqrt{7}+\frac{1}{2}, намерете противоположната стойност на всеки член.
\frac{\left(x+\frac{1}{2}\sqrt{7}-\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{7}-\frac{1}{2}\right)}{-2x^{2}}
За да намерите противоположната стойност на \frac{1}{2}\sqrt{7}+\frac{1}{2}, намерете противоположната стойност на всеки член.
\frac{x^{2}-x-\frac{1}{4}\left(\sqrt{7}\right)^{2}+\frac{1}{4}}{-2x^{2}}
Използвайте дистрибутивното свойство, за да умножите x+\frac{1}{2}\sqrt{7}-\frac{1}{2} по x-\frac{1}{2}\sqrt{7}-\frac{1}{2} и да групирате подобните членове.
\frac{x^{2}-x-\frac{1}{4}\times 7+\frac{1}{4}}{-2x^{2}}
Квадратът на \sqrt{7} е 7.
\frac{x^{2}-x-\frac{7}{4}+\frac{1}{4}}{-2x^{2}}
Умножете -\frac{1}{4} по 7, за да получите -\frac{7}{4}.
\frac{x^{2}-x-\frac{3}{2}}{-2x^{2}}
Съберете -\frac{7}{4} и \frac{1}{4}, за да се получи -\frac{3}{2}.
\frac{\frac{1}{2}\times 2\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-2x^{2}}
Разложете на множители изразите, които все още не са разложени на множители.
\frac{\frac{1}{2}\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-x^{2}}
Съкращаване на 2 в числителя и знаменателя.
\frac{\frac{1}{2}x^{2}-\frac{1}{2}x-\frac{3}{4}}{-x^{2}}
Разкрийте скобите в израза.