Премини към основното съдържание
Решаване за x
Tick mark Image
Решаване за y
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

1=x\left(-3y+2\right)
Умножете и двете страни на уравнението по -3y+2.
1=-3xy+2x
Използвайте дистрибутивното свойство, за да умножите x по -3y+2.
-3xy+2x=1
Разменете страните, така че всички променливи членове да са от лявата страна.
\left(-3y+2\right)x=1
Групирайте всички членове, съдържащи x.
\left(2-3y\right)x=1
Уравнението е в стандартна форма.
\frac{\left(2-3y\right)x}{2-3y}=\frac{1}{2-3y}
Разделете двете страни на 2-3y.
x=\frac{1}{2-3y}
Делението на 2-3y отменя умножението по 2-3y.
1=x\left(-3y+2\right)
Променливата y не може да бъде равна на \frac{2}{3}, тъй като делението на нула не е дефинирано. Умножете и двете страни на уравнението по -3y+2.
1=-3xy+2x
Използвайте дистрибутивното свойство, за да умножите x по -3y+2.
-3xy+2x=1
Разменете страните, така че всички променливи членове да са от лявата страна.
-3xy=1-2x
Извадете 2x и от двете страни.
\left(-3x\right)y=1-2x
Уравнението е в стандартна форма.
\frac{\left(-3x\right)y}{-3x}=\frac{1-2x}{-3x}
Разделете двете страни на -3x.
y=\frac{1-2x}{-3x}
Делението на -3x отменя умножението по -3x.
y=\frac{2}{3}-\frac{1}{3x}
Разделете 1-2x на -3x.
y=\frac{2}{3}-\frac{1}{3x}\text{, }y\neq \frac{2}{3}
Променливата y не може да бъде равна на \frac{2}{3}.