Премини към основното съдържание
Изчисляване
Tick mark Image
Разлагане
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

\frac{x+4}{\left(x+4\right)^{2}}-\frac{x^{2}-4}{x+2}
Разложете на множители изразите, които все още не са разложени на множители, в \frac{x+4}{x^{2}+8x+16}.
\frac{1}{x+4}-\frac{x^{2}-4}{x+2}
Съкращаване на x+4 в числителя и знаменателя.
\frac{1}{x+4}-\frac{\left(x-2\right)\left(x+2\right)}{x+2}
Разложете на множители изразите, които все още не са разложени на множители, в \frac{x^{2}-4}{x+2}.
\frac{1}{x+4}-\left(x-2\right)
Съкращаване на x+2 в числителя и знаменателя.
\frac{1}{x+4}-x+2
За да намерите противоположната стойност на x-2, намерете противоположната стойност на всеки член.
\frac{1}{x+4}+\frac{\left(-x+2\right)\left(x+4\right)}{x+4}
За да съберете или извадите изрази, приведете ги към общ знаменател. Умножете -x+2 по \frac{x+4}{x+4}.
\frac{1+\left(-x+2\right)\left(x+4\right)}{x+4}
Тъй като \frac{1}{x+4} и \frac{\left(-x+2\right)\left(x+4\right)}{x+4} имат един и същ знаменател, съберете ги, като съберете техните числители.
\frac{1-x^{2}-4x+2x+8}{x+4}
Извършете умноженията в 1+\left(-x+2\right)\left(x+4\right).
\frac{9-x^{2}-2x}{x+4}
Обединете подобните членове в 1-x^{2}-4x+2x+8.
\frac{x+4}{\left(x+4\right)^{2}}-\frac{x^{2}-4}{x+2}
Разложете на множители изразите, които все още не са разложени на множители, в \frac{x+4}{x^{2}+8x+16}.
\frac{1}{x+4}-\frac{x^{2}-4}{x+2}
Съкращаване на x+4 в числителя и знаменателя.
\frac{1}{x+4}-\frac{\left(x-2\right)\left(x+2\right)}{x+2}
Разложете на множители изразите, които все още не са разложени на множители, в \frac{x^{2}-4}{x+2}.
\frac{1}{x+4}-\left(x-2\right)
Съкращаване на x+2 в числителя и знаменателя.
\frac{1}{x+4}-x+2
За да намерите противоположната стойност на x-2, намерете противоположната стойност на всеки член.
\frac{1}{x+4}+\frac{\left(-x+2\right)\left(x+4\right)}{x+4}
За да съберете или извадите изрази, приведете ги към общ знаменател. Умножете -x+2 по \frac{x+4}{x+4}.
\frac{1+\left(-x+2\right)\left(x+4\right)}{x+4}
Тъй като \frac{1}{x+4} и \frac{\left(-x+2\right)\left(x+4\right)}{x+4} имат един и същ знаменател, съберете ги, като съберете техните числители.
\frac{1-x^{2}-4x+2x+8}{x+4}
Извършете умноженията в 1+\left(-x+2\right)\left(x+4\right).
\frac{9-x^{2}-2x}{x+4}
Обединете подобните членове в 1-x^{2}-4x+2x+8.