Премини към основното съдържание
Решаване за v (complex solution)
Tick mark Image
Решаване за t
Tick mark Image
Решаване за v
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

\Delta vt\Delta =\Delta x
Умножете и двете страни на уравнението по t\Delta .
\Delta ^{2}vt=\Delta x
Умножете \Delta по \Delta , за да получите \Delta ^{2}.
t\Delta ^{2}v=x\Delta
Уравнението е в стандартна форма.
\frac{t\Delta ^{2}v}{t\Delta ^{2}}=\frac{x\Delta }{t\Delta ^{2}}
Разделете двете страни на \Delta ^{2}t.
v=\frac{x\Delta }{t\Delta ^{2}}
Делението на \Delta ^{2}t отменя умножението по \Delta ^{2}t.
v=\frac{x}{t\Delta }
Разделете \Delta x на \Delta ^{2}t.
\Delta vt\Delta =\Delta x
Променливата t не може да бъде равна на 0, тъй като делението на нула не е дефинирано. Умножете и двете страни на уравнението по t\Delta .
\Delta ^{2}vt=\Delta x
Умножете \Delta по \Delta , за да получите \Delta ^{2}.
v\Delta ^{2}t=x\Delta
Уравнението е в стандартна форма.
\frac{v\Delta ^{2}t}{v\Delta ^{2}}=\frac{x\Delta }{v\Delta ^{2}}
Разделете двете страни на \Delta ^{2}v.
t=\frac{x\Delta }{v\Delta ^{2}}
Делението на \Delta ^{2}v отменя умножението по \Delta ^{2}v.
t=\frac{x}{v\Delta }
Разделете \Delta x на \Delta ^{2}v.
t=\frac{x}{v\Delta }\text{, }t\neq 0
Променливата t не може да бъде равна на 0.
\Delta vt\Delta =\Delta x
Умножете и двете страни на уравнението по t\Delta .
\Delta ^{2}vt=\Delta x
Умножете \Delta по \Delta , за да получите \Delta ^{2}.
t\Delta ^{2}v=x\Delta
Уравнението е в стандартна форма.
\frac{t\Delta ^{2}v}{t\Delta ^{2}}=\frac{x\Delta }{t\Delta ^{2}}
Разделете двете страни на \Delta ^{2}t.
v=\frac{x\Delta }{t\Delta ^{2}}
Делението на \Delta ^{2}t отменя умножението по \Delta ^{2}t.
v=\frac{x}{t\Delta }
Разделете \Delta x на \Delta ^{2}t.