x üçün həll et
x=\frac{\sqrt{285}-17}{2}\approx -0,059028492
x=\frac{-\sqrt{285}-17}{2}\approx -16,940971508
Qrafik
Paylaş
Panoya köçürüldü
xx+1=-17x
Sıfıra bölmə müəyyən edilmədiyi üçün x dəyişəni 0 ədədinə bərabər ola bilməz. Tənliyin hər iki tərəfini x rəqəminə vurun.
x^{2}+1=-17x
x^{2} almaq üçün x və x vurun.
x^{2}+1+17x=0
17x hər iki tərəfə əlavə edin.
x^{2}+17x+1=0
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-17±\sqrt{17^{2}-4}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün 17 və c üçün 1 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-17±\sqrt{289-4}}{2}
Kvadrat 17.
x=\frac{-17±\sqrt{285}}{2}
289 -4 qrupuna əlavə edin.
x=\frac{\sqrt{285}-17}{2}
İndi ± plyus olsa x=\frac{-17±\sqrt{285}}{2} tənliyini həll edin. -17 \sqrt{285} qrupuna əlavə edin.
x=\frac{-\sqrt{285}-17}{2}
İndi ± minus olsa x=\frac{-17±\sqrt{285}}{2} tənliyini həll edin. -17 ədədindən \sqrt{285} ədədini çıxın.
x=\frac{\sqrt{285}-17}{2} x=\frac{-\sqrt{285}-17}{2}
Tənlik indi həll edilib.
xx+1=-17x
Sıfıra bölmə müəyyən edilmədiyi üçün x dəyişəni 0 ədədinə bərabər ola bilməz. Tənliyin hər iki tərəfini x rəqəminə vurun.
x^{2}+1=-17x
x^{2} almaq üçün x və x vurun.
x^{2}+1+17x=0
17x hər iki tərəfə əlavə edin.
x^{2}+17x=-1
Hər iki tərəfdən 1 çıxın. Sıfırdan istənilən şeyi çıxdıqda mənfisi alınır.
x^{2}+17x+\left(\frac{17}{2}\right)^{2}=-1+\left(\frac{17}{2}\right)^{2}
x həddinin əmsalı olan 17 ədədini \frac{17}{2} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə \frac{17}{2} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}+17x+\frac{289}{4}=-1+\frac{289}{4}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla \frac{17}{2} kvadratlaşdırın.
x^{2}+17x+\frac{289}{4}=\frac{285}{4}
-1 \frac{289}{4} qrupuna əlavə edin.
\left(x+\frac{17}{2}\right)^{2}=\frac{285}{4}
Faktor x^{2}+17x+\frac{289}{4}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x+\frac{17}{2}\right)^{2}}=\sqrt{\frac{285}{4}}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x+\frac{17}{2}=\frac{\sqrt{285}}{2} x+\frac{17}{2}=-\frac{\sqrt{285}}{2}
Sadələşdirin.
x=\frac{\sqrt{285}-17}{2} x=\frac{-\sqrt{285}-17}{2}
Tənliyin hər iki tərəfindən \frac{17}{2} çıxın.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}