x üçün həll et
x=3
Qrafik
Paylaş
Panoya köçürüldü
\left(x+1\right)x-3x=3
Sıfıra bölmə müəyyən edilmədiyi üçün x dəyişəni -1 ədədinə bərabər ola bilməz. Tənliyin hər iki tərəfini x+1 rəqəminə vurun.
x^{2}+x-3x=3
x+1 ədədini x vurmaq üçün paylama qanunundan istifadə edin.
x^{2}-2x=3
-2x almaq üçün x və -3x birləşdirin.
x^{2}-2x-3=0
Hər iki tərəfdən 3 çıxın.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün -2 və c üçün -3 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Kvadrat -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
-4 ədədini -3 dəfə vurun.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
4 12 qrupuna əlavə edin.
x=\frac{-\left(-2\right)±4}{2}
16 kvadrat kökünü alın.
x=\frac{2±4}{2}
-2 rəqəminin əksi budur: 2.
x=\frac{6}{2}
İndi ± plyus olsa x=\frac{2±4}{2} tənliyini həll edin. 2 4 qrupuna əlavə edin.
x=3
6 ədədini 2 ədədinə bölün.
x=-\frac{2}{2}
İndi ± minus olsa x=\frac{2±4}{2} tənliyini həll edin. 2 ədədindən 4 ədədini çıxın.
x=-1
-2 ədədini 2 ədədinə bölün.
x=3 x=-1
Tənlik indi həll edilib.
x=3
x dəyişəni -1 ədədinə bərabər ola bilməz.
\left(x+1\right)x-3x=3
Sıfıra bölmə müəyyən edilmədiyi üçün x dəyişəni -1 ədədinə bərabər ola bilməz. Tənliyin hər iki tərəfini x+1 rəqəminə vurun.
x^{2}+x-3x=3
x+1 ədədini x vurmaq üçün paylama qanunundan istifadə edin.
x^{2}-2x=3
-2x almaq üçün x və -3x birləşdirin.
x^{2}-2x+1=3+1
x həddinin əmsalı olan -2 ədədini -1 almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə -1 kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}-2x+1=4
3 1 qrupuna əlavə edin.
\left(x-1\right)^{2}=4
Faktor x^{2}-2x+1. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x-1=2 x-1=-2
Sadələşdirin.
x=3 x=-1
Tənliyin hər iki tərəfinə 1 əlavə edin.
x=3
x dəyişəni -1 ədədinə bərabər ola bilməz.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}