x üçün həll et
x=-6
x=7
Qrafik
Paylaş
Panoya köçürüldü
x^{2}-x-42=0
Hər iki tərəfdən 42 çıxın.
a+b=-1 ab=-42
Tənliyi həll etmək üçün x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) düsturundan istifadə edərək x^{2}-x-42 tənliyini əmsallarına ayırın. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
1,-42 2,-21 3,-14 6,-7
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b mənfi olduğu üçün mənfi rəqəmin müsbətdən daha böyük mütləq qiyməti var. -42 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
1-42=-41 2-21=-19 3-14=-11 6-7=-1
Hər cüt üçün cəmi hesablayın.
a=-7 b=6
Həll -1 cəmini verən cütdür.
\left(x-7\right)\left(x+6\right)
Əldə olunan qiymətlərdən istifadə etməklə vuruqlara ayrılan \left(x+a\right)\left(x+b\right) ifadəsini yenidən yazın.
x=7 x=-6
Tənliyin həllərini tapmaq üçün x-7=0 və x+6=0 ifadələrini həll edin.
x^{2}-x-42=0
Hər iki tərəfdən 42 çıxın.
a+b=-1 ab=1\left(-42\right)=-42
Tənliyi həll etmək üçün qruplaşdırmaqla sol əl tərəfi əmsallarına ayırın. Əvvəlcə sol əl tərəf x^{2}+ax+bx-42 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
1,-42 2,-21 3,-14 6,-7
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b mənfi olduğu üçün mənfi rəqəmin müsbətdən daha böyük mütləq qiyməti var. -42 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
1-42=-41 2-21=-19 3-14=-11 6-7=-1
Hər cüt üçün cəmi hesablayın.
a=-7 b=6
Həll -1 cəmini verən cütdür.
\left(x^{2}-7x\right)+\left(6x-42\right)
x^{2}-x-42 \left(x^{2}-7x\right)+\left(6x-42\right) kimi yenidən yazılsın.
x\left(x-7\right)+6\left(x-7\right)
Birinci qrupda x ədədini və ikinci qrupda isə 6 ədədini vurub çıxarın.
\left(x-7\right)\left(x+6\right)
Paylayıcı xüsusiyyətini istifadə etməklə x-7 ümumi ifadəsi vurulanlara ayrılsın.
x=7 x=-6
Tənliyin həllərini tapmaq üçün x-7=0 və x+6=0 ifadələrini həll edin.
x^{2}-x=42
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x^{2}-x-42=42-42
Tənliyin hər iki tərəfindən 42 çıxın.
x^{2}-x-42=0
42 ədədindən özünün çıxılması 0-a bərabərdir.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-42\right)}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün -1 və c üçün -42 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-\left(-1\right)±\sqrt{1+168}}{2}
-4 ədədini -42 dəfə vurun.
x=\frac{-\left(-1\right)±\sqrt{169}}{2}
1 168 qrupuna əlavə edin.
x=\frac{-\left(-1\right)±13}{2}
169 kvadrat kökünü alın.
x=\frac{1±13}{2}
-1 rəqəminin əksi budur: 1.
x=\frac{14}{2}
İndi ± plyus olsa x=\frac{1±13}{2} tənliyini həll edin. 1 13 qrupuna əlavə edin.
x=7
14 ədədini 2 ədədinə bölün.
x=-\frac{12}{2}
İndi ± minus olsa x=\frac{1±13}{2} tənliyini həll edin. 1 ədədindən 13 ədədini çıxın.
x=-6
-12 ədədini 2 ədədinə bölün.
x=7 x=-6
Tənlik indi həll edilib.
x^{2}-x=42
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=42+\left(-\frac{1}{2}\right)^{2}
x həddinin əmsalı olan -1 ədədini -\frac{1}{2} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə -\frac{1}{2} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}-x+\frac{1}{4}=42+\frac{1}{4}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla -\frac{1}{2} kvadratlaşdırın.
x^{2}-x+\frac{1}{4}=\frac{169}{4}
42 \frac{1}{4} qrupuna əlavə edin.
\left(x-\frac{1}{2}\right)^{2}=\frac{169}{4}
Faktor x^{2}-x+\frac{1}{4}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x-\frac{1}{2}=\frac{13}{2} x-\frac{1}{2}=-\frac{13}{2}
Sadələşdirin.
x=7 x=-6
Tənliyin hər iki tərəfinə \frac{1}{2} əlavə edin.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}