x üçün həll et
x=-200
x=136
Qrafik
Paylaş
Panoya köçürüldü
x^{2}=27200-64x
64 ədədini 425-x vurmaq üçün paylama qanunundan istifadə edin.
x^{2}-27200=-64x
Hər iki tərəfdən 27200 çıxın.
x^{2}-27200+64x=0
64x hər iki tərəfə əlavə edin.
x^{2}+64x-27200=0
Standart formaya salmaq üçün çoxhədlini yenidən qurun. Həddləri ən yüksəkdən ən aşağı qüvvətə doğru yerləşdirin.
a+b=64 ab=-27200
Tənliyi həll etmək üçün x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) düsturundan istifadə edərək x^{2}+64x-27200 tənliyini əmsallarına ayırın. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
-1,27200 -2,13600 -4,6800 -5,5440 -8,3400 -10,2720 -16,1700 -17,1600 -20,1360 -25,1088 -32,850 -34,800 -40,680 -50,544 -64,425 -68,400 -80,340 -85,320 -100,272 -136,200 -160,170
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b müsbət olduğu üçün müsbət rəqəmin mənfidən daha böyük mütləq qiyməti var. -27200 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
-1+27200=27199 -2+13600=13598 -4+6800=6796 -5+5440=5435 -8+3400=3392 -10+2720=2710 -16+1700=1684 -17+1600=1583 -20+1360=1340 -25+1088=1063 -32+850=818 -34+800=766 -40+680=640 -50+544=494 -64+425=361 -68+400=332 -80+340=260 -85+320=235 -100+272=172 -136+200=64 -160+170=10
Hər cüt üçün cəmi hesablayın.
a=-136 b=200
Həll 64 cəmini verən cütdür.
\left(x-136\right)\left(x+200\right)
Əldə olunan qiymətlərdən istifadə etməklə vuruqlara ayrılan \left(x+a\right)\left(x+b\right) ifadəsini yenidən yazın.
x=136 x=-200
Tənliyin həllərini tapmaq üçün x-136=0 və x+200=0 ifadələrini həll edin.
x^{2}=27200-64x
64 ədədini 425-x vurmaq üçün paylama qanunundan istifadə edin.
x^{2}-27200=-64x
Hər iki tərəfdən 27200 çıxın.
x^{2}-27200+64x=0
64x hər iki tərəfə əlavə edin.
x^{2}+64x-27200=0
Standart formaya salmaq üçün çoxhədlini yenidən qurun. Həddləri ən yüksəkdən ən aşağı qüvvətə doğru yerləşdirin.
a+b=64 ab=1\left(-27200\right)=-27200
Tənliyi həll etmək üçün qruplaşdırmaqla sol əl tərəfi əmsallarına ayırın. Əvvəlcə sol əl tərəf x^{2}+ax+bx-27200 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
-1,27200 -2,13600 -4,6800 -5,5440 -8,3400 -10,2720 -16,1700 -17,1600 -20,1360 -25,1088 -32,850 -34,800 -40,680 -50,544 -64,425 -68,400 -80,340 -85,320 -100,272 -136,200 -160,170
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b müsbət olduğu üçün müsbət rəqəmin mənfidən daha böyük mütləq qiyməti var. -27200 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
-1+27200=27199 -2+13600=13598 -4+6800=6796 -5+5440=5435 -8+3400=3392 -10+2720=2710 -16+1700=1684 -17+1600=1583 -20+1360=1340 -25+1088=1063 -32+850=818 -34+800=766 -40+680=640 -50+544=494 -64+425=361 -68+400=332 -80+340=260 -85+320=235 -100+272=172 -136+200=64 -160+170=10
Hər cüt üçün cəmi hesablayın.
a=-136 b=200
Həll 64 cəmini verən cütdür.
\left(x^{2}-136x\right)+\left(200x-27200\right)
x^{2}+64x-27200 \left(x^{2}-136x\right)+\left(200x-27200\right) kimi yenidən yazılsın.
x\left(x-136\right)+200\left(x-136\right)
Birinci qrupda x ədədini və ikinci qrupda isə 200 ədədini vurub çıxarın.
\left(x-136\right)\left(x+200\right)
Paylayıcı xüsusiyyətini istifadə etməklə x-136 ümumi ifadəsi vurulanlara ayrılsın.
x=136 x=-200
Tənliyin həllərini tapmaq üçün x-136=0 və x+200=0 ifadələrini həll edin.
x^{2}=27200-64x
64 ədədini 425-x vurmaq üçün paylama qanunundan istifadə edin.
x^{2}-27200=-64x
Hər iki tərəfdən 27200 çıxın.
x^{2}-27200+64x=0
64x hər iki tərəfə əlavə edin.
x^{2}+64x-27200=0
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-64±\sqrt{64^{2}-4\left(-27200\right)}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün 64 və c üçün -27200 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-64±\sqrt{4096-4\left(-27200\right)}}{2}
Kvadrat 64.
x=\frac{-64±\sqrt{4096+108800}}{2}
-4 ədədini -27200 dəfə vurun.
x=\frac{-64±\sqrt{112896}}{2}
4096 108800 qrupuna əlavə edin.
x=\frac{-64±336}{2}
112896 kvadrat kökünü alın.
x=\frac{272}{2}
İndi ± plyus olsa x=\frac{-64±336}{2} tənliyini həll edin. -64 336 qrupuna əlavə edin.
x=136
272 ədədini 2 ədədinə bölün.
x=-\frac{400}{2}
İndi ± minus olsa x=\frac{-64±336}{2} tənliyini həll edin. -64 ədədindən 336 ədədini çıxın.
x=-200
-400 ədədini 2 ədədinə bölün.
x=136 x=-200
Tənlik indi həll edilib.
x^{2}=27200-64x
64 ədədini 425-x vurmaq üçün paylama qanunundan istifadə edin.
x^{2}+64x=27200
64x hər iki tərəfə əlavə edin.
x^{2}+64x+32^{2}=27200+32^{2}
x həddinin əmsalı olan 64 ədədini 32 almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə 32 kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}+64x+1024=27200+1024
Kvadrat 32.
x^{2}+64x+1024=28224
27200 1024 qrupuna əlavə edin.
\left(x+32\right)^{2}=28224
Faktor x^{2}+64x+1024. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x+32\right)^{2}}=\sqrt{28224}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x+32=168 x+32=-168
Sadələşdirin.
x=136 x=-200
Tənliyin hər iki tərəfindən 32 çıxın.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}