x üçün həll et
x=\sqrt{2}-\frac{3}{2}\approx -0,085786438
x=-\sqrt{2}-\frac{3}{2}\approx -2,914213562
Qrafik
Paylaş
Panoya köçürüldü
x^{2}+3x=-\frac{1}{4}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x^{2}+3x-\left(-\frac{1}{4}\right)=-\frac{1}{4}-\left(-\frac{1}{4}\right)
Tənliyin hər iki tərəfinə \frac{1}{4} əlavə edin.
x^{2}+3x-\left(-\frac{1}{4}\right)=0
-\frac{1}{4} ədədindən özünün çıxılması 0-a bərabərdir.
x^{2}+3x+\frac{1}{4}=0
0 ədədindən -\frac{1}{4} ədədini çıxın.
x=\frac{-3±\sqrt{3^{2}-4\times \frac{1}{4}}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün 3 və c üçün \frac{1}{4} ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-3±\sqrt{9-4\times \frac{1}{4}}}{2}
Kvadrat 3.
x=\frac{-3±\sqrt{9-1}}{2}
-4 ədədini \frac{1}{4} dəfə vurun.
x=\frac{-3±\sqrt{8}}{2}
9 -1 qrupuna əlavə edin.
x=\frac{-3±2\sqrt{2}}{2}
8 kvadrat kökünü alın.
x=\frac{2\sqrt{2}-3}{2}
İndi ± plyus olsa x=\frac{-3±2\sqrt{2}}{2} tənliyini həll edin. -3 2\sqrt{2} qrupuna əlavə edin.
x=\sqrt{2}-\frac{3}{2}
-3+2\sqrt{2} ədədini 2 ədədinə bölün.
x=\frac{-2\sqrt{2}-3}{2}
İndi ± minus olsa x=\frac{-3±2\sqrt{2}}{2} tənliyini həll edin. -3 ədədindən 2\sqrt{2} ədədini çıxın.
x=-\sqrt{2}-\frac{3}{2}
-3-2\sqrt{2} ədədini 2 ədədinə bölün.
x=\sqrt{2}-\frac{3}{2} x=-\sqrt{2}-\frac{3}{2}
Tənlik indi həll edilib.
x^{2}+3x=-\frac{1}{4}
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{1}{4}+\left(\frac{3}{2}\right)^{2}
x həddinin əmsalı olan 3 ədədini \frac{3}{2} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə \frac{3}{2} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}+3x+\frac{9}{4}=\frac{-1+9}{4}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla \frac{3}{2} kvadratlaşdırın.
x^{2}+3x+\frac{9}{4}=2
Ortaq məxrəci tapmaqla və surətləri əlavə etməklə -\frac{1}{4} kəsrini \frac{9}{4} kəsrinə əlavə edin. Daha sonra mümkündürsə, kəsri ən aşağı həddə qədər azaldın.
\left(x+\frac{3}{2}\right)^{2}=2
Faktor x^{2}+3x+\frac{9}{4}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{2}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x+\frac{3}{2}=\sqrt{2} x+\frac{3}{2}=-\sqrt{2}
Sadələşdirin.
x=\sqrt{2}-\frac{3}{2} x=-\sqrt{2}-\frac{3}{2}
Tənliyin hər iki tərəfindən \frac{3}{2} çıxın.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}